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ABSTRACT

Part I of this paper deals with the problem of designing a feedback

control for a linear infinite dimensional system in such a way that a given

quadratic cost functional is minimized. The essential feature of this work is

that:

a) it allows for unbounded control and observation, i.e. boundary control,

point observation, input/output delays; and

b) the general theory is presented in such a way that it applies to both
. . ... ..- Lr

parabolic and hyperbolic I P9es as well as retarded and neutral -P98b-

--I Part II the paper develops a state space approach for retarded systems

with delays in both input and output. A particular emphasis is placed on the

development of the duality theory by means of two different state concepts.

The resulting evolution equations fit into the framework of Part I.
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THE LINEAR QUADRATIC OPTIMAL CONTROL PROBLEM FOR INFINITE
DIMENSIONAL SYSTSMS WITH UNBOUNDED INPUT AND OUTPUT OPERATORS

A. J. Pritchard* and D. Salamon**

1. INTRODUCTION

The control and observation processes for many dynamical systems are

often severely limited. For example there may be delays in the control

actuators and measurement devices. Also for systems described by partial

differential equations it may not be possible to influence or sense the state

of the system at each point of the spatial domain. Instead controls and

sensors are restricted to a few points or parts of boundaries. Modelling

such limitations results in unbounded input and output operators.

In the first part of this paper we develop a general theory for linear

quadratic control which allows us to consider such operators. We then show

how the theory applies to hyperbolic and parabolic partial differential

equations and neutral systems with output delays.

In the second part of the paper we develop a state space theory for

linear functional differential equations with general delays in the state,

inputs and outputs. Then we show how the results of the general theory may

be applied and hence solve the linear quadratic control problem for such

systems. ! '-:iin Por ...

?Por

PART I - ,

2. FINITE TIME CONTROL .4 -94iCt

In a formal sense our basic model is

i(t) - Ax(t) + Bu(t), x(to) xo, "

(2.1) d
y(t) = Cx(t), to S. t < t1 ,  " 411 /or--
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2 2where u(-) a L (toot ;U), y(.) a L (to,t;Y), U and Y are Hilbert

spaces and A is the infinitesmal generator of a strongly continuous

semigroup S(t) on a Hilbert space H. In order to allow for possible un-

boundedness of the operators B and C, we assume that B e 4(U,V),

C a t(WY) where W,V are Hilbert spaces such that

(2.2) W C H C V

with continuous dense injections. Of course, we interpret equation (2.1)

in the mild form which means that its solution x(t) is given by the variation-

of-constants formula

t

(2.3) (t) - S(t-t0 )x + f S(t-a)Bu(o)do, to s t s t,too 1

tt0

In order to make this formula precise and to allow for trajectories.in all

three spaces W,H,V we have to assume that S(t) is also a strongly

continuous semigroup on W and V and that the following hypotheses are

satisfied.

tl

(Hl) There exists some constant b > o such that J S(t 1 -o)Bu(o)do W U

ti

and 1 J S(t -o) u(o)daJI . b 11 u(-)ll
for U L2 (to,t1 ;U)

every u(.) e L2(t 0,tl;U).

(H2) There exists some constant c > o such that

Ixi.-to)  l . c II x II
L2(tot l;Y) V

for every x G W.
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Remarks 2.1

i) For every x 0 W and every u(.) G L2(t,t;U) formula (2.3) defines

a continuous function x(.) with values in W and the output function Y(*) is

continuous with values in Y. Alternatively if x0 G H (reap. V), then

x(.) is only continuous with values in H (reap. V) and y(.) L 2 (t0, tl;Y).

Sometimes we will regard (2.3) as a dynamical system on the state space V.

(ii) In the following we identify the Hilbert spaces H,U and Y with their

duals. Then it follows from (2.2) by duality that

V* C-H QW*

with continuous dense embeddings. Moreover, S*(t) is a strongly continuous

semigroup on all three spaces V ,HW .

(iii) The dual statements of (Hl) and (H2) are the following

(H*) For every x Q V* the following inequality holds

IB*S*(t-) x I1 b 1II1
L2(tot;U) *

(C2*) For every y(.) 6 L 2[t ,t ;Y we have
t 1 1

Its (T-to0)C y(TldT C 2 ly.
6 V L2 [t, t;Y]

(see SALALMON (40]). •

(iv) The expression CS(t)x only makes sense when x C W. However, if (H2)

is satisfied, then for any x a V we will use the expression CS(t)x,

t t < tip to denote the function in L2 (tootI;Y) which is obtained by

continuous extension of the operator W s x - CS(')x & L 2(t0 tI ;Y) to x 6 V.

In the sam manner we define B*S(t)x, tO $ t S t1 , for x a W* when (Hl) is

satisfied. In particular, the expressions CS(t)Bu and e*S*(t)C*y have a well

defined meaning as functions of t when (Hl) and (H2)are satisfied.

-3-



Associated with the control system (2.3) is the performance index

J(u) - ct 1), Gx(t )3.

(2.4)

+ (1 rll (t1112 + ft(t),u(t, I dt
t
0

where G C t(V,Ve ) is a positive semidefinite operator and R 4 ( (U)

satisfies

'C U ,: " 1- u I 11 2
U U

for some o and every u & U.

Now let us consider system (2.3) with the feedback control

(2.5) u1 (t) - F(t)x(t). t t e

where F(t) C f(VU) is strongly continuous on the interval [tot 1 ]. Then we

may define a mild evolution operator 0F(ts) C 4.(V), to .<a 6 t 4 t1, via

t

(2.6) *1 (t,s)x - S(t-s)x + iS( -)BF(O) F(as)xdc

(see CURTAI-PRITCHARD (9]).

Remarks 2.2

() It follows from (2.6) that F(t,s) satisfies the equation

(2.7) #,(l:.s)x-x - #(ta)[A+3V7a)]xda, to s a s t s t1

for every x G. D V(A) (the domain of A retarded as an unbounded, closed

operator on V), Equivalently the function s -p F(t.s)X G V is

continuously differentiable on the interval [tot] for every x d D (A)

and satisfies
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(2.s -8) (ts)[A* BF(s)jx, to a S t €

(see CURTAfl4-PRITCHARD [9]).

(ii) It is vell known that the evolution operator satisfies the equation

(2.9) *(ts)X - S(t-s)x + J *1 (ta)DP(a)S(o-s)xdo

for t o kc a t t 1 and x 6 V.

(see CURTAIN-PRITCHARD [9]).

(iii) Often we will consider the feedback system with an additional forcing

input v(.) so that

(2.10) u(t) - 1(t)x(t) + v(t)

in (2.3). It follows easily from (2.9) that - for this control function - the

corresponding solution of (2.3) is given by

t

(2.11) +(t) (tot )z J 0*(t,o)Bv(o)da, to 4 t $ t

(iv) Using (2.6) it is easy to see that 1F(t,s) is also a strongly

continuous evolution operator on V and V and has the following properties.

(El') Thereexists a constant b' > o such that

I tI F (°r t'o)Bu~o)d°'l <  b' II u(.)ll
to W L2 (tot;U)

2
for every u(.) & L (to, to;U) and every t a [t ot ]*1 01

(R2') There exists a constant c' : o such that

MY (.,-)xl c l x II
L2 (s,tY;Y) V

for every x k V and every s f (toot 1 ].

S--



The dual properties are the following

(HI' ) The inequality

Ii3;(t-)x11 c b' J x 11

L (to*t;U) W*
*

holds for every x a V and every t a jtotl].

(112' ) The inequality

ti

V L2(:st ;Y)

holds for every y(.)• L (tot;Y) and every a . (to,t]."

Using the condition (1R2') and its'dual we can define a strongly continuous

operator P (t) f t(V,V*), by

p1 (t)x - OF(tlt)G#F(t19t)x

(2.12) tl
+ Jtl,*(Tt)[C*C+F*(T)R(T) ]OF (vt)xdT

jtt

for to < t <t and x a V. Then the cost of the feedback control (2.5)

corresponding to an initial state x e V is given by0

(2.13) J(u) - <Xo,PF(to)xo >

V, V

If the initial state is in H, then this expression can be interpreted via the

inner product in H.

2A formula comparing the cost of an arbitrary control u(.) G L (tot l;U)

with the cost of the feedback control (2.5) will play an important role in

our analysis. In the proof of this result we will need to interchange some

integrals. At some points this becomes a delicate problem since we vill

-6-



have to operate with terms like CO (ts)B. In order to make the results

precise, we need a third hypothesis.

(H13) Suppose that

Z - OV(A)c CW

with a continuous, dense embedding where the Hilbert space Z is

endowed with the graph norm of A, regarded as an unbounded, closed

operator on V.

This assumption is not very restrictive. It is satisfied by all known

examples of systems which satisfy (HI) and (H2) .if the spaces V and V are

chosen appropriately. In the following we sumarise some important consequences

of (W3).

Remarks 2.3

(i) If (H3) is satisfied, then A can be regarded as a bounded operator

from Z into V. Correspondingly A* becomes a bounded operator from V* into

Z* On the other hand A can be restricted to a closed, densely defined

operator on Z. It's adjoint in this sense coincides with the above operator

A :V - Z* (SALAMON [40, Lena 1.3.2]) and moreover

) (A*) ¢ )(A*) - Vr.
W*

(ii) It is a well known fact from semigroup theory that

t

Tt x J S(s)ids Q DV(A) - Z
0

for every x r V and every t > o. If (H3) is satisfied then Tt is a strongly

continuous family of bounded, linear operators from V into W. rt is easy

to see that the adjoint operator Tt Z .(W*,V e ) is given by

-7-



t

?t*x " oS*(s)xds W*(W) - V*
0

for x a W and t t 0.

(iii) if (HI), (12) and (W3) are satisfied then the following equation

holds for every u a U and every t > a

t t

CJo S(s)Duds - CTtBu Jo CS(s)Buds.

This seems like a trivial fact, however, ve were not able to establish this

identity without assuming (3). Note that the LHS of the above equation

has to be interpreted in terms of (l) and the RHS in term. of CW2). For

establishing the equation one must approximate Bu 4 V by a sequence of

elements in W. Then the term on the LiKS will not converge in general unless

range Tt - W.

Leama 2.4

Suppose that (HI), (H2), (H3) are satisfied, let F(t) C g(V,U),

t o 0 t f ti, be strongly continuous and let *F(ts) 4 at (V) t (W) be
defined by (2.6). Moreover, let u(.) 2(tootI;U) and y() 4 L2(tootI;U)

be given. Then

to t I  tI t

C2.lI.# J~J(*(t's)Bu~s),y~t);* dtd5 J cc 0 (t~s)Bu(s)ds~yCc)> dt(2 .14 ) i t0i to i t FY
-o -te toY

where the first expression must be interpreted in terms of W and the

second in term- of (H1I).

Pronf First note that, by (2.6) and (Hl),

0r(t.,) - S(t-s) 6 X(v.W).



Hence it is enough to establish the desired equation with 0* (t~s) replaced

by S(t-s).

Secondly, let us assume that u(-) 4 CI (t0 01t ;U) and u~t )-0. Then

t0

to-

-jJS(t-s)IBa(a)dads

t t

S
to j a S(t-s)B (adsdo

t

Analogously, we get

Z() 5*(-$Cytd -J T C y(r)d-i

for y(.) 4d C1(topt I;Y) with y(t) 0. This implies

t Cx(t),y(t)Ydt

ti t

- J~Jt (ltuI(s),Y(t)) ds dt

ti ti

f to 4~(s),B*T* C y(t)3d. d

0i t -s

c<a(s),B* J ?C*y(is)dv2 do
ft T00



ti

Both sides of this equation depend continuously on u(-)4 L (toot ;U) and

y(-) 4 L 2 toot 1 ;Y). Moreover

ti

Su(s)hB*z(s)> ds

J

to0

3<s u(s), sds
" I Id

to s V'V

ti ti

" J J <CS(t-s)Bu(s),y(t)> dtds.
t 5 y
0

This proves the statement of the lemma. 03

Now we are in the position to prove the desired comparison formula for the

feedback control (2.5).

Lemma 2.5

Suppose that (HI), (W2), (H3) are satisfied, let F(t) I t(V,U) be

strongly continuous on the interval [to,t 1] and let PF(t) f .(V,V*) be

defined by (2.12) and (2.6). Then the following equation holds for every

X 0 V and every u(-) L 2(t,t I;U)

J(u) - <XoP (t )x >

VyV

(2.15) " < (Rl'*pF(t)x(t)+u(t),R[R-lB*PF(t)x(t)+u(t)>dt
t 0

It a~ <7B*PF(t)x(t)+F(t)x(t),RIRl*PF,(t)x(t)+F(t)x(t)]>dt

where x(t), t < t tit is given by (2.3).

- 10 -
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Proof We give a proof of (2.15) for the case x 0 .W and u(.) C C(to, ;U).

Let x(t) be the mild solution of (2.1) given by (2.3) and define

v(t) - u(t)-F(t)x(t) for t > to. Then, by Remark 2.2 (iii)

t
5(t) - *1 (t-s)Bv(s)ds - x(t) t''t °)

Y
°

to

for t0 < t < t1. Let us first apply Lemma 2.4 to the functions.

( v(t), to t s,

0, a t t1

(t) 0, to t a,
y()- CO F(t~s)Bv(s), s % t C. t1

and integrate over s. Then we get

€1  t 1

tit , J <CQF(t's)z(s)CF(ts)Bv(s)>dt]ds

o II

ti t
" f [* C .(t o)BVs(o)do~y.(t)>dtl ds

00 0 1 a

ti t

to 6 t

- i I J a <COF(ta)Bv(o),C4F(ts)Bv(s)>dtJda ds

£o t to l

- 1:1<C# L (t,o)Bv(a),CF(ts)Bv()dtds]do

ta0Il

O.,

4 -.---.-.----------



t1
<- JF J C*(t'o)Bvr(o) C J *(t~s)Bv(*)d2dt do *by (2.T4)

.t 0

0

and hence, again using Lem& 2.4,

21 -CC (ts)X()Cf(t,s)v(s)>dt ds
U s -

0

*Re <tjt CJ F(t~o)Bv()d,CF (t~s)Bv()-dt ds

t t t

+. Re <c 0(t,a)Bv(o)dc7.C*F(t,s)Bv(s)>dtds

ti t

-21. <J C$(t't )x9CJ F(t,*)Bv(s)ds~dt ,by (2.14)
it a

tit

0

29a J C F s(t't 0 )XCz(t)3)dt
t

It <Cz(t),Cz(t)>dt ,by (2.14)

I II.t12 dt It UIC(t.t 0)x l2 dt.

0 0

-12-



Analogous identities can be derived in a more straightforward way when

C C 49 W.W*) is replaced by G 4 ~(y,V*) or F*(t)RF(t) -C~ (VV )

respectively. This implies

2 Re < (*)x(s) ,Iv(s))ds

it

-2R* J @1 F(t ,s)x(e),G# F(t13s)Dv(s))ds
to0

t I t I

* 2 Re J C JCF (ts)x(s)CO F(t,@)3v(s)2,dt ds
to 8

to

- CX(t1),Gx(t1 I~ F c(tilt )xGOF (tlft 0)x0

* t -

to 0txtFtxt)d t<~~oF(~ ZOY OF(' d'

Now the L RS of (2.15) equals

-13-



J(u) - x '  (t )x >

ti t1

f u(t).Ru(t),dt - JL (t)#F (t.t 0)x° 0F0()# (t' 0)x0>dt

x JtO F 0a#(t)t0 ) 2 dt
to to

t t1
+ -cu(t).R¢t)>dt + 2, Re< 1F(t)x),' (tt°) dt

t t

ti

-<J F(t)X(t),dJ(t)x(t)dtv

t 0

It is easy to see that the final expression coincides vith the IR S of

(2.15). This proves Lem 2.5. e

We are nov able to prove the main result of this section

Theorem 2.6 Let (lii), (112) and (W13) be satisfied. Then there exists a unique

strongly continuous self adjoint, non-negative operator P(t) d i(VV*)

t S t 4 t1 solving the interal Riccati equation.

P(t)x - * (tll)(titx

(2.16) * * *(st) IC C+Pl?(m- lipls)] * (s,t)xds
It•

- 14 -
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for : 4  W and t t 4 t1 vtere (s,t) *(st) is the evolution operator

defined by (2.6) with F(t) R B R'BP(t) d I (V,U). furthermore that* is a

unique optimal control which minimixes the performance index (2.4) subject

to (2.3). This optimal control is given by the feedback control law

(2.17) uP(t) - - R'1BeP(t)x(t)

end the optimal cost is

(2.18) JAu) - cxoP(to)x 0

Proof. We regard equation (2.16) as a fixed point problem which is to be

solved by iteration. Let us define the sequence Pk(t) (V;V*) recursively

through

P Ct) - 0

P~t - ~ t - le (t)1
Pkt) PF(t), Ft) Pkl(t)

for kS N and t S tSt

where PF(t) is given by (2.12). Let us also define

k (St)- P (s,t), F(t) - - Pk(t)

so thit

Pk~l tWx - k(tist)G k (tlItOX

(2.19)

+ 1 J* 8t) (C*C+, txds

holds for t0  t f t1 end x 6, W. Applying Lemma 2.5 to 1(t) - - I Pk I(t)

ead uk(t) -- R71 P k(t)x(t), we obtain

-15-
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J! J(Uk)

(2.0)' ' 1'k (t0)x0l

t

0

S <x ,oPkCto)xo'

for k 4 IU andx 0 4. V. Thus the sequence <x.oPk(t)x~ a k a I, is

monotonically decreasing and positive. Hance Pk(to) converses strongly to

a non-negative, self adjoint operator P(t 0)4 j (V,V.-) (cf. KATO (25 . p. 454,

Theorem 3.3]). The a&e conclusion is valid for ever/ t [ t * t Isince t *
0; 0

can be chosen arbitrarily.

Moreover, (2.20) shows that the functions Pk t t t p k t. & O. are

uniformly bounded in V~ Hence the limit function P(t)x, t 0 t 6 tipi

strongly measurable in V * and bounded. Therefore we can introduce a strongly

continuous evolution operator *(s,t) - *(s,t) 0 IM(V which is defined by

(2.6) with F(t) - -I lBIp(t).

Our next step is to prove that k (s,t)x & V converges for every x e. V

to *(s~t)rc and that this convergence is uniform on thie domain t s as t

(t fixed). For this sake let us consider the identity

*(s,t)x - k SO

-JS(s-'r)BR7*Pk(')-p(r)J 9C(r, t)xdv
t

5

-JS(s-r)BR71Epk(r)[(Tprt)3t-k(r- 
t)xldt

-16



and apply Gronwall's lema. Then the desired convergence of *k(St)x

follows from the pointwise strong convergence of Pk(T) to P(r) together

with the dominated convergence theorem.

As a consequence of this convergence result we obtain a uniform bound
o Ik(st) ,(V)and thus an k(,t)II for k a W4 and t 9 s < t 1.

This allows us to apply the dominated convergance theorem to formula (2.19)

and hence P(t) satisfies the integral Riccati equation (2.16). Finally, it

follows easily from (2.16) together with the strong continuity of *(s,t) in

both variables and in both spaces V and W that the operator P(t) . L (V,V*)

is strongly continuous on the interval ito,tl]. Thus we have proved the

existence of a solution to (2.16).

In order to prove the uniqueness for the solution of (2.16) together with

the statements on the optimal control, let us assum that P(t) 4 1 (V,V*) is

any strongly continuous, non-negative solution of (2.16). Moreover, let

z ° G V, u (.) C L2(tot1;U) be given, let x (t) * V be the corresponding

solution of (2.1) which is given by (2.3) and define v(t) - u(t) + R7's*p(t)x(t)

for .to S t .4 t1. Then it follows from Lemm 2.5 that

t I

(2.21) J(u) - <%o,P(to)X0 * J <v(t),Iv(t )dt.
to

Hence the optimal control is unique and given by the feedback law (2.17) and

the optimal cost is given by (2.18). Moreover, we conclude from (2.21) that

<x ,p(t )x > - <xo,P(to)xo > for any two non-negative solutions P(t),t(t) £C (VV*)

of (2.16) and any xog V. Since to t I can be chosen arbitrarily, this proves

the uniqueness of the solution to (2.16).

The following result shows that the integral Riccati equation (2.16) can be

converted into a differential Riccati equation.

-17-



Proposition 2.7

Suppose that (Ml), (U2) and (H3) are satisfied and let P(t)'. {V.V) be

a non-negative, self adjoint. strongly continuous operator on the interval

[toot 1. Moreover, let the evolution operator *(s.t) - *1(s.t) ( I (V) be

defined by (2.6) with F(t) - - RIB*P(t). Then the following statements are

equivalent.

(L) Equation (2.16) holds for every x G W and every t 4 [t 0 tII.

(ii) For every x a V and every t . It 0 t 1 ] the following equation holdL

tI

(222 (t) - O*(t1 t)GS(t-t)x + J (s,t)C*CS(s-t)xd

(iii) For eve% x 6 1 and every t 4 (to t13 the following equation holds

P(t)x = S (tI-t)CS(t 1 -t)x
tl

(2.23) * S S(s-t)[C*C-P(s)IR-1B p(s)]S(.-t):d

t

(iv) For every x 4 Z the function P(t)x, to S t S t1 is continuously

differentiable with values in Z* and satisfies the differential Riccati equation

(2.24;1) d P(t)x + A*P(t)x + P(t)Ax - P(t)1lP(t)x + C*Cx a 0
dt

(2.24;2) P(tI)a - Gx

Proof The equivalence of the statements (i), (Ui) and (Wi) can be established

in a straightforward way by using the formulas (2.6) and (2.9). We will only

show that (i) iuplies (ii). In fact, (i) implies that the following equation

holds for every x Q& U and every t ( [tooY
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-*(t 1,t)GS(t 1 -t31 + J *(at)C~cs(s-t)xds

t

* *(tist)G J: (t -0)BF (-0S (T-t)xd-r

0(S,t)C*C f (s.r)BF(Tr)S(r-t)xd~ds

* J (stt)F*(s)RF(s)O(s,t)xds
t

where Y(t) --R B*P(t) 4 1 (V,U) for to C t ti. The last three term on

the RHS of this equation cancel out since

ti

It (et)F(s)RF(s)S(s-t)xds

+ 0~J (s.t)F*(s)RP(s)09,T)BF(rC)S(T-t)xd-rds
t t

= ( W p () (BF (.0)S (-t)x]
t

tl

- J *(.r, t)O* (ts)( T)BF ( )S(T-t)xds~

tI 
t

- .*(~t)O*(ST)CCtsT)l()S(t)xdsdT
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Applying Lamma 2.4 to the final term, we obtain the desired cancellation.

Now we prove the equivalence of the statements (iii) and (iv). Note that

the equation

<CS(t)zCS(t)x> - <CZ.CX>

(2.26) t

J[cCS(s)AzS(s)x> + .CS(s)z,CS(s)Ax~lds

holds f or all x,z t DW(A) and every t a; 0. It follows from (M1) and (H2) that

both sides of this equation depend continuously on x,z C Z - .V (A) C W and

that 2 (A) C. DW(A) C Z. Consequently 0 (A is dense in Z and hence (2.26)

holds for all x,z . Z.

From (2.26) we see that the function z,P(t)x> - defined by (2.23) - is

continuously differentiable on the interval 1t,,t1 for all x,z 4.Z and satisfies

the equation

dt

-- <S(t 1 -t)Az,GS(t 1 -tx - <S(tI- t)z,GS (t It)Ai>

<Cz,Cx> + <z,P(t)BR71 BP(t)x>

- C(s-t)Az,CS (s-t)x), + <CS (s-t) :,CS (s-t)Ax' Ids

it

tI

- Ax,P(t)x-1 - <z,P(t)Ax'

-'cczcx' + cz.P(t)uale*p(t)x2-
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This implies

ZZ*

t
1

a,Gx + it [A*P(s)x P(s)Ax-P(s)BR-1B*P(s)x+C*Cx]ds>Z,

mo hence (2.241). Thus ve have proved that (iii) implies (iv).

Conversely, let us "sum that P(t) satisfies (2.24). Then the following

equation holds for every x C Z and every t 4L [t0 tl]

$e(t -t)GS(t-t)x - P(t)x

t1

-t LS (s-t)P(s)S(s-t)xds

ti

S*(s-t)[ ()A*P(s)+P(s)A]S(s-t)xds

ti

S (s-t)[C*C-P(s)B- P(s)]S(s-t)xds

where the integral has to be understood in the Hlbert space Z and f(t) is the

stroiM derivative of P(t), t 0< t < t I regarded as an operator in £ (Z,Z*). V

3. INFINITE TIHE CONTROL

In this section we consider the control problem of minimizing the performance

index

2

(3.1) J(u) I( *t) 1 u(t),Ru(t) JdtoY U0

where y(t) is again the output of (2.1) with to - 0, i.e.
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t

(3.2) y(t) - CS(t)x° + C oS(t-s)Bu(s)ds, t > 0.

For this infinite time problem it is not clear that the cost will be finite

for any control input u(') L 2(o,-;U). So we add this as another hypothesis.

(H4) For every x F. V there exists a u (-) o- L 2[o,;U] such that J(ux )<e.
0 0

We will derive the optimal control via the solution of an algebraic Riccati

equation which is actually the stationary version of (2.24). For this sake we

consider the finite time control problems of minimizing the cost functionals.

T
(3.3) J lu)" i y(t) + <u2t:,]u(t)> dt

0 U

subject to the constraint (3.2). The corresponding Riccati operator will be

denoted by PT(t) d £ (V,V*) and satisfies the equation

(3.4) PrTt)x
T

SI S*(s-t)C*C-PT(s)sR-1B*PT(S)]S(s-t)xds

ItTT

for every x . W and every t 6 [0,T].

Leona 3.1

P T-6(t) - PT(t+*) , 0 $ t T-

Proof

The operator PT(teu) satisfies the equation

T

P (t+cI)x S* (s-t*-)(C*C-PT (s)Bs) ]S(s-t-u)xds

T T *T~sT-6

It

-22-
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for x 6 W and 0 * t s T - . Thus the statement of the Lemma folinws from

rhe equivalence of (2.16) and (2.23) (Proposition 2.7) together with the

uniqueness result (Theorem 2.6). I

We will derive the solution of the algebraic Ric.-ti equation as the limit

of the solutions to integral Riccati equations as T goes to infinity. For this

we need the following preliminary result which is a special case of Proposition

2.7.

Corollary 3.2

Suppose that the hypotheses (H1), (12) and (13) are satisfied and let

P *f E(VV*) be a non-negative, self adjoint operator. Moreover, let

Sp(t) f. ;(V) n -(W) be the strongly continuous semigroup which is generated

by A-BR-B*P: b V(A) - V, i.e. Sp(t) satisfies the equation

t

(3.5) Sp(t)x - S(t)x - J S(t-s)BR-B*PSp(s)xds
O

for x 6. V and t > o. Then the following statements are equivalent.

(i) For every x 4E W and every t > o

Px - Sp (t)PS (t)x

(3.6) t

+ S*(s)[C*C PBR- B*P]Sp(s)xds

(ii) For every x C W and every t > o

t

(3.7) Px - S (t)PS(t)x + Sp(s)C *CS(s)xds
p 

00

(iii) For every x I W and every t a o

Px - S*(t)PS(t)x

t

+ J0S*(s)[C*C-PBi-1S*P]S(s)xds

O-2



(iv) For every x 6 Z the following equation holds in Ze

(3.9) A*Px + PAx - PBRI B*Px + C*Cx -O.

Now we are in the position to prove the main result of this section.

Theorem 3.3

Let (Hl), (112) and (13) be satisfied. Then the following statements hold.

(i) The hypothesis (HA) is satisfied if and only if there exists a non-negative

self adjoint solution P E f(V,V*) of (3.9).

(ii) If (HA) is satisfied, then there exists a unique optimal control

Up () L 2(o,m;U) which is given by the feedback law.

(3.10) u(t) = - R-1B*Px(t), t 0,
p O

where P E. t (V,V*) is the (unique) minimal solution of (3.9). Moreover, the

optimal cost is given by

(3.11) J(u p) = <x ,Px >.

(iii) If (H4) is satisfied, then the minimal solution P # £(V,V*) of (3.9) is

strong limit of PT (O) E I (V,Ve ) as T goes to infinity where P Tt) is defined

by (3.4).

Proof

First recall that the optimal control of the finite time problem on the

interval 10,T] is given by uT(t) - R7 1ePT(t)x(t), 0 .< t g< T, and the optimal

cost by JT(UT) x,PT(O)x> (Theorem 2.4). So (H4) implies that

X oPT(O)xo> - JT(UT) * JT(ux - J(U %)-c

and thus there exists a limit of the increasing function <xoPT(o)xo),T 1 0, for
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every x 4r V. Hence there exists a non-negative, self adjoint operator

P a f(V,V ) which is the strong limit of PT(O) (KATO [25, p.454, theorem 3.3]).

By Lemma 3.1,

(3.12) Px - s-lim P T(t)x - V*
T_-

exists uniformly in t on every compact time interval. Making use of formula

(3.4), we obtain

Px a lir P (O)x
T.

T

- lim J S*(s)[C*C'PT()BR-1B*PT(s)]S(s)xds
T o

T

= lim B * (t)S*(s-t)[C*C-P T(s)BR-B*PT(s)]S(s-t)S(t)xds
T- t

+ lim S* (s)(CCCPT(s)BR B PT(S)]S(s)xds

= lim S (t)P T(t)S(t)x
T-_

t

+ J S*(s)[C*C-PBR'B*P]S(s)xds

- S(t)PS(t)x

t

+ f S*(s)[C*C-P.BR'B*p]S(s)xds

and hence P 6 t(V,V*) is a solution of (3.6), (3.7), (3.8) and (3.9).

Conversely, let Q 4 f(V,V*) be any non-negative solution of (3.9) and

let uQ(t) -R-B*Qx(t) be the corresponding feedback control law with the
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associated closed loop semigroup SQ(t) C r (V) % j (W). Then the following

inequality holds for every x° 0£ V

<x 0Qx >

Slir ( <S Q(t)XoQS Q(t)x >

t

(3.13) + J <S^ (s)xo• [C*C+QBR-1B*Q]SQ(S)X0 ds)

)I SQ(t)x°9 [C*C+QBRI-B*Q] SQ(s)x ° > ds

, J(uQ)

and hence (0t) is satisfied. Moreover, the operator P 6 c (VV*) defined by

(3.12) satisfies the inequality

<o 0  >

lim <Xo,PT (o)x >
o T

< lim JT(U)
T'"

- J(u)

2
for every admissible control u(.) e L (o,";U). This shows that P is the

minimal positive semidefinite solution of (3.6). Finally, taking Q - P, we

conclude that the unique optimal control is given by (3.10) with cost (3.11).

Although the above theorem yields a solution to the infinite time problem,

in a sense it is unsatisfactory. This is because we are not sure of a unique

solution to the algebraic Riccati equation and also we cannot be sure that the

semigroup S p(t) is exponentially stable. In order to resolve those difficulties,

we need another hypothesis.
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(i1S) If x 0 V and u(.) & L2 (o,s;U) are such that J(u)< -, then x(-) a L2(o.";V)

where x(t), t > o, is given by (2.3) with t - 0.
0

Theorem 3.4

Let (Hl), H2), (13) and (015) be satisfied. Then the algebraic Riccati equation

(3.9) has at most one non-negative, self adjoint solution P E I (V,V*). Moreover,

if P is such a solution, then the closed loop semigroup S pt) E I (V) is

exponentially stable.

Proof

If P 9 t(V,V*) is a positive semidefinite solution of (3.9), then the

inequality (3.13) with Q=P shows that the closed loop control u (t) -R-1B*Px(t)P

has a finite cost for every initial state x 0 V. By hypothesis (01) this meanso

that

i1 S p(t)x o12 dt <

0 V

for every x 0 V. Hence it follows from a result of DATKO [11] that the semi-

group S (t) Q L (V) is exponentially stable (see also CURTAIN-PRITCHARD 19]).P

The stability of S p(t) shows that we have equality in (3.13) and hence

J(u ) - <x,Px o.
p o 0

Now let Q E (V,V*) be another non-negative solution of (3.9) and let us apply

Loma 2.5 to the performance index

JTQ Cu) - <x(T),Qx(T)>

T

* Ji y(t) 112 + <(t),Ru(t))] dt
0 Y

as well as the feedback P(t) £ - R7IBQ and the control input u (t). Then
p

Fi 0t Q a n d h e n c e t h e i n e q u a l i t y

J - 27 -
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Cx 0*Px 0><0 0o

- J(u p)

a lira JT,Q(Up)
T -

- list ['Z.•Qx

T-

+ -CRlB*Qx(t)+u W()R lR7'l*Q(t)+u (t) ] >dt
fo p

. -Cx 0 ,Qx >

holds for every x ° 0_ V. Interchanging the roles of P and Q, we conclude that

P - Q. M

Finally, let us briefly discuss the hypotheses (14) and (H5) which are

chosen in a general sense but are difficult to check in concrete examples. In

most cases it might be desirable to replace them by stronger assumptions which

are easier to check.

Remarks 3.5

Let (Hi) and (H2) be satisfied.

(i) Suppose that system (2.1) is stabilizable in the sense that there exists a

feedback operator F C I(V,U) such that the closed loop semigroup SF(t) e 1 (V)

defined by

t.

$F(t)x - S(t)x + J S(t-s)BFSF(s)xds
0

for t a o and x C V is exponentially stable. Then hypothesis (14) is satisfied.

In fact, there is an instant T > o and a constant cT > o such that the

inqualities
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I sl'it)ff t(V) <  If CSF(.)xIIL2 (O,T;y) V CI I  Iv

hold for every x e W. This implies that

Il CS(.)xl < C I Il SCT)ll Il xl
L2(o,-;Y) k-o (V) V

for x t W and hence C3) is satisfied.

(ii) Suppose that system (2.1) is detectable in the sense that there exists

an operator K 4 f(YV) such that the output injection semigroup SK~t) 4 IV)

defined by

t

S x - SWtlx * J S(t-s)KCS(s)xds

0

for t i o and x 6 W (see SALAWON [40 1 Theorem 1.3.9]) is exponentially stable.

Then hypothesis CW5) is satisfied.

In fact, if x(t) fm V is defined by

t

x(t) - St)x 0 + S(t-s)Bu(s)ds, t ), o,

and y(t) - Cx(t) for x° 4 V and u(.) CL L1 oc(,.;U), then it is easy to see

that
t

x(t) - SKt)x° 0 SK(t-s)[Su(s)-Ky(s)]ds, t . o

Hence Jlu) C - implies that x(.) L L 2 (O,-;V).

(iii) If (H4) and (HS) are satisfied, then system (2.1) is stabilizable in the

sense of (i). (Theorem 3.3 and Theorem 3.4).

(iv) For finite dimensional systems (H3) is equivalent to detectability in the

sense of (ii). It seems to be an open problem whether this equivalence extends

to the infinite dimensional situation.
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4. EXAMPLES

4.1 Neutral systems with output delays

We consider the linear neutral functional differential equation (NFDE)

(4.1) (x(t)-Mxt) = Lx *BoU(t)

y(t) = Cxt

where x(t) c V, u(t) e V . . y(t) e RP and xt is defined by

x(r) - x(t+r), -h s T < o, h > o. B0 is an nxm matrix and L, M, C are

bounded linear functionals from C C[-h,o; JK1 2] into n and kP respectively.

These can be represented by matrix-functions n(v), u(T), y(T) of bounded

variation in the following way

0 0#- J dn(,) r). - du(r)$(#).

-h -h

0

c# J dy(T)*(r),
/-h

In order to guarantee the existence and uniqueness of solutions of (4.1) we

will always assume

(4.2) p(o) = lim u(T)
T~o

Moreover, we will assume at some places that f:'-. tn is of the special form

0
a I

(4.3) -* A j.(-h.)+ I A.(T)#(r)dT,

j. -h

vhere o < h h, Aj dnforij , .(-) Ll(-h,O; Inr

and

j-l
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A function x(.) C L2  (-h,; k') is said to be a solution of (4.1)

if the function w(t) - x(t) - Mxt is absolutely continuous with an L
2

- derivative

on every compact interval (O,T], T > 0, and if v(t) - Lxt + B U(t)

for almost every t > o. It is well known (BURNS-HERDMAN-STECH 1 7 ], SALAMON

[40]) that equation (4.1) admits a unique solution x(t). t t -h, for every

input u(.) . L2 ioc (o,-; i?.m) and every initial condition

(4.4) lir x(t) - Mxt . # x(0 ) X(T (), -h S T ' 0,

t~o

where - (#o, f1) M2 = n x L2 (-ho; rn). Moreover it has been shown

in [7]. [40] that the evolution of the state

(4.5) x(t) - (x(t) - Mxtx t ) M2

of system (4.1), (4.4) can be described by the formula

t

(4.6) 1(t) - S(t) + Jo S(t-s)Bu(s)ds

2

where B f I('m, M) maps u £ Rm into the pair Bu - (Bou, o) and

S(t) C :E(M 2) in the strongly continuous semigroup generated by A, where

D(A) - { M2 : M Wi2 0 (0)MI }

A4 (I4# .

Here W1'2 denotes the Sobolev space W1'2 (-h,o; Kfn).

Obviously, the dense subspace

W ( *(0) - M,,): * W1 ' 2 } = 0(A)

-31-
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of - endowed with the W1 ' 2 norm- is invariant under S(t) and S(t) can be

restricted to a strongly continuous semigroup on W.

The output of the system (4.1) may be described through the operator

0 1C W. C4 f dy(T)l(T) , 4 * W.

-h

Remarks 4.1

(i) The infinitesimal generator A of S(t) can be interpreted as a bounded

operator from W into M2 . By duality, M can be regarded as a dense subspace

of W* and A* extends to a bounded operator from M2 into W*.

(ii) It has been proved in BURNS-HERDHAN-STECH [7 ] and SALAMON [40] that

system (4.1) satisfies the hypotheses (Hi) and (H2) with H - V - M2 and the

subspace W C M2 as defined above. Hypothesis (Hl) says that the state

; (T) e N2 of (4.1) defined by (4.5) is in W for every input u(.) 4 L2 (oT; 9. )

and zero initial condition and that x(T) G W depends continuously on

u(.) a L2 [o,T; Wm]. Hypothesis (H2) says that the output y(.) of the free

system (4.1) (i.e. u(t) 0- ) is in L2 (o,T; KP) and depends in this space

continuously on the initial state * 4 H2 .

(iii) If M . 'n is given by (4.3), then it is known that the semigroup

S() f. (H2 ) is exponentially stable if and only if

0 - sup (ReA : det (A) - 0) < o

0
where A(X) - A[I - H(e')] -L(e'), a & C , is the characteristic matrix of

the HMDE (4.1). A necessary condition for the exponential stability of S(t)

is the stability of the difference operator which means that

-32-
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-Xh.
(4.7) sup (ReA: det[I- Aj J O} 0.

j-1

These facts have been established by HENRY [21] for S(t) C (W). They

extend to S(t) CL (M2) because of the similarity of these two semigroups

through the transformation MI-A:W - M 2 with a 4 o-(A).

(iv) If H: M :n is given by (4.3) and if (4.7) holds, then system (4.1)

is stabilizable in the sense that there exists a feedback operator

F M (H2, I N) such that the closed loop semigroup SF(t) 6 £ (M2 )

generated by A * BF is exponentially stable if and only if

(4.8) rsnk [ A(),B ° ] - n X e 4 , ReA~o.

(PAZDOLFT [38], SALAION [40]).

(v) If M: q- I " is given by (4.3) and if (4.7) holds, then system (4.1)

is detectable in the sense that there exists an output injection operator

V ' (ePM 2 ) such that the closed loop semigroup SK(t) .I (M2) generated by

A + KC is exponentially stable if and only if

(4.9) rank I C(e n.)

(SALAON [40]).

Associated with the system (4.1) we consider the performance index

(4.10) J(u) - Jo [II1y( I2  * IIU(tl 2  ]dt

Then ye have the following theorem.
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Theorem 4.2

Assume H: l lt is given by (4.3) and (4.7) is satisfied, then

the following statements hold.

(i) If (4.8 ) is satisfied, there exists, for every initial state * r H2

a unique optimal control which minimizes the cost functional (4.10). This

optimal control is given by the feedback law

(4.11) u (t) - - e*l(t)
2

where i E (H 2 ) is the minimal selfadjoint, non-negative operator

which satisfies the algebraic Riccati equation

(4.12) Aw + irA+C *C - 7rBB *i - 0

(this equation must be understood in the space I(W,W*)). Moreover the

optimal cost is given by

(4.13) J(uW ) - < f ) ' >* 2

(ii) if (4.3) is satisfied, then there exists at most one non-negative self

adjoint solution w C 1M(2) of (4.12). Moreover if w is such a solution, the

closed loop semigroup S (t) f (H 2 ) generated by A-BB i is exponentially

stable.

Apparently the paper of DATKO [101 and the thesis of ITO [25] have the

only available results in the literature on the linear quadratic control problem

for neutral systema. In DATKO [10] the optimal control is not shown to be

of feedback form. ITO (25] considers neutral systems in the product space

framework, however his detectability concept is very strong and unnatural.

Moreover. the proofs appearing in both papers are quite complicated.
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4.2 Parabolic systems

Consider the system

x - Ax + Bu
(4.14)

y "Cx

where A is a self adjoint operator on a real Hilbert space H. Let An . ft,

be the (simple) eigenvalues of A with corresponding eigenvectors 0 n r H, -1 f 1 ,

and assume Ixni- as n - and ... Xn $ constant. Then

AX AIn 1 X ot hOen

n-1
(4.15)

2 2
D(A) (x H: <x,4 n>H

nal

and A generates a strongly continuous semigroup S(t) on H, where

(4.16) S(t)x A e~nt <x4On>fu -
n-i

A precise definition of the operators B and C will be given below. For now,

we only assume that the expressions

(4.17) c n - C. nC Y, bn - B* On U.

are well defined for every n ._1 . The operators B and C are completely

determined by these sequences. The remaining problem is to introduce - if

possible - suitable spaces W and V such that B $ I(U,V), C 0 '4(W,Y) and

that the hypotheses (HI) and (02) are satisfied. It will turn out that there

is in general some freedom in the choice of these spaces if they exist.
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P+,

More precisely, for any positive sequence

we define the Hlbert space

H -{x- (x a x2 < 0 )

n4 n n

with inner produce

an n n c.

Remarks 4.3

(i) We may identify H with H -I via the isometric isoorphism

i: H H1

x 0 (-Cx, 4 n > H n a w
H~ H.

i -I : HI  * H,

(xi) H xn if

(ii) H < H if and only if the sequence a /a is bounded.

a n a *~I.

(iii)a -H - (x: a- 2 1 }
a n al n xn

with respect to the duality pairing

<x*,> X- n x , X*E 1 -1 , x GQ H

(iV) a g_ H can be identified with the sequence en  (0,..., 1,0, ...)via

the mapping i. This sequence is contained in any He
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Now we may associate with the operator A a whole family of operators A

on H, defined by

ID (A) (x tli H a X2 2 <

A x (A x )
Qa n n&IL

Each of these operators generates a strongly continuous semigraup S (t) C (HCL a

which is given by

S t x -{e Ant ., e* t >,o, x & H *

Associated with the sequences (4.17) we introduce the maps

(4.18) B 0 U - He

U -~ {<b n >UAI

(4.19) C Y:H -Y ,

x -* n

However, these operators are not well defined for every choice of 8and y

respectively. Sufficient conditions of well posedness of (4.18)'and (4.19)

as well as for the Hypotheses (Hi) and (112) are given in the next Lemma.

Lem& 4. 4

(i) if

do 2
(4.20) 1 0 I bi <

n-1 n nU
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then (4.18) defines a bounded operator B8 6 j(UH )

In the case U - R condition (4.20) is also necessary.

(ii) If

2
(4.21) 1 lc il

nl Y

then (4.19) defines a bounded operator C Y 6 (H ,Y). In the case U -

condition (4.21) is also necessary.

(iii) Let no = max (n t A n o, let (4.20) be satisfied and suppose that

Yn

(4.22) -_ Ilbnil
n-no+l Vn- u

Then, for every T > o, there exists a constant b > o such that

T

Io f SO(T-s) 8u(s)dsII s b IIu(.)Il
0 ss L2 [o,T;U]

for evPry u(-) & L2 (o,T; U].

(iv) If (4.21) holds and

W 1 2
(4.23) X jA7 a y

n +1 n n

then, for every T > o, there exists a constant c > o such that

llcY S (.)xll c 1 xll
L [o,T;Y]

for every x & H

Proof First note that (ii) and (iv) are the dual statements of (i) and (iii)

respectively. Statement (i) is trivial and (iii) follows from the inequality.
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T

II SB (T-s)B u(s)ds j
0 Y

T

Y e b u(s)ds
n1 n 0 n

T

2 -2121 2

Yn e n dsb llb nl .lu(.)ul( 2  
2

n 0 L [, L2(o,T;I m )

So we have to consider the problem whether there exists sequences B ,n such

that the inequalities (4.20-23) are satisfied. This problem has a simple

solution.

Lemma 4.5

Given the sequences b e U, C n & Y, A e such that A is strictly
n n n n

decreasing and tends to - - , there exist sequences B o a, Y > o such
n n

that the inequalities (4.20-23) are satisfied if and only if

(4.24) 1Cnll Y.11bn <

n-no+l 1A n1

Proof

Necessity It follows from (4.20) and (4.23) that
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a~oZ xl L J Ln- 1 1 i..no t OnknI n n o +1

Sufficiency Suppose chat (4.24) is satisfied and define

(Ilcnlly/lbnlIuI~nI
, b o,  c + o, p A .+ 0

(4.25) sn  J n2 11 j
/ 12 / , bn - o ,  + os A. . 0
2

t /n2 2 b + 0, C o , t o

otherwise

I.4. c1 4.o, Y/14. b+0,
In lcn]/llbn , bn +, Ac An

2n,21c.1Y,9 b n  o, cn + 0, An + o

(4.26) Y n
2

lxn I/n211b 11 , bn  o, c -a, An + 0,
U

max ( i,IAI1) , otherwise

Then it is easy to see that (4.20-23) are satisfied.

Remarks 4.6

(i) Let (4.24) be satisfied and let B and y be given by (4.25) and (4.26)

respectively. Then Yn a BnJAnI for almost every n f IW (with at most a

finite number of exceptions) and hence

(A) (A6 ) {x: 
2(As): ~ -n(xn Z o xn H ' C. H

ui1

In particular, hypothesis (03) is satisfied.

(ii) If the sequence Bn/yn is bounded, then we may assume without loss of
-l

generality that H YC H C- H . or equivalently that the sequences 0n and yn

are bounded. This can always be achieved by redefining b nC n n and yn"
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(iii) The system(4.14) is stabilizable in the sense that there exists an

FO f t(HBU) such that AB + BB F generates an exponentially stable

semigroup if and only if bn + o for n - ., here 0 is defined as in

lema 4.4(c) (see CURTAIN-PRITCHARD [9]).

(iv) Let (4.23) and (4.21) be satisfied. Then system (4.14) is detectable

in the sense that there exists a K S 4 (YH ) such that the operator

AB * *B C*: 0 (A8 ), - H generates an exponentially stable semigroup on HB

if and only if cn + o for n - 1, ..., no . This is not the dual problem of

(iii) since K C is an unbounded perturbation of AS. However, ifc n + o for

n - 1, ... , no, then we may choose fs ... f noe Y such that the matrix

1<fltcl > 
. . . <fl C no >

no <fnl .- <fno Cno>
n 0 nonot no

is stable and define KB  Y Vi *

K~y - {f n,y>)nE

where f n o for n > no . Then it follows from the finite-dimensionality of

K that A + K C generates a semigroup (SALAMON [40])and it is easy to see

that this semigroup is exponentially stable.

Now we are in the position to apply the Theorems 3.3 and 3.4 to the Cauchy

problem (4.14) with the performance index (4.10).

Theorem 4.7

Let the operators A, B, C be given as above. Suppose that (4.24) is

satisfied, let Bn and yn be given by (4.25) and (4.26) respectively and assume

that H _ H . I Finally, suppose that b. o and c. o for n 1. no .Y 1 Bm nm ., 0
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Then the following statements hold.

(i) There exists a unique family (p n,m :n,m #A defining a seif-adjoint,

non-negative operator P t I (H H via

W

Px -{ 1 Pnm xm) , x t He

and satisfying the following equation for all nm

(n +m )Pn, m + <Cn cm> y
(4.27)

ji ki n,j <jbk> Pktmj-1 k-i I

(ii) For every initial state x 0 IH there exists a unique optimal control

which minimizes the cost functional (4.10) subject to (4.14). This optimal

control is given by the feedback law.

(4.28) u(t) - - B*Px(t) - - bn pn, <x(t).*>n-i n-l 'm>M

(note that x(t) 6 H for t > o) where pn,m' n,m ' St, are defined as above.

The optimal cost is

(4.29) J(u) 7 x P x
n-1 m-1 on nm ow

Moreover, the closed loop semigroup on MB, generated by A - B B P is

exponentially stable.

As a specific example consider

(4.30;1) z zCc, t > o, a C < 1,
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(4.30;2) zs(o,t) - u(t), z (It) 0, t > o,

(4.30;3) z(C,o) - z(.), < C < 1,

1

(4.30;4) y(t) - J c()z(&,t)d&, t > 0.
0

It can be shown (see CURTAIN-PRITCHARD [ 9]) that this system is equivalent

to a Cauchy problem of the form (4.14) with (Bu) (C) - (E)u (6 is the
- -- nz2 2, AFlC - cosawf

Dirac delta function), X0 0, 0( i . -, x #n 2

for nqi and o* 1. Hence

b -- 1, b -- r, n

O I1
1

cn - I c(E)#n(C)dC, n - o, 1, 2,.....

0

So condition (4.24) is satisfied if

Cn
n

This allows for arbitrary bounded, linear output operators from L2 [o,1]

into R which means that c(-) L 2 [o,lJ or equivalently the sequence c
n

is square summable. However, the output operator can-also be unbounded. For

example, if cn - n- then we may choose y n-n 1-2c and S. B n-1 -2 , so that

W, V are the intermediate spaces

" jHl [olJ, L2[°'lI] = 101'[O+EJ ,

2.

V [o.l), L2(ol 0

In particular the solution operator P of the algebraic Riccati equation maps
I*I1+ C 

"

S(o,l1 into H (o,1]. 43,1



4.3 Hyperbolic systems

Consider the system

(4.31) ; - As + Bu, y - Cz,

Where A is a selfadjoint operator on a Hilbert space H whose (simple)

eisenvalues A - - 2 satisfy
a

(4.32) w 1 6, %+1 "n 1 , a t4.

for sms 8 3 0. As before, let Hn R be the corresponding eigen-

vectors of A with I1 nil H - 1 so that A is given by (4.15). For the

operators B and C we only assume that the expressions (4.17) are vell

defined.

Identifying H with its dual, ve obtain

V C H C- V,

V -((-A) 1 ) C H A Ni 4 x , .*,2 C).
n-1l

and A extends to a bounded operator from V into V*. In order to

transform (4.31) into a first order system, ve introduce the Hilbert space

VxH- x°0, 0>V,V
5  tKll xx

Thw the operator C -0, (.) -. I defined by

[0 11 t(O..) (AxV
is the infinitesimal generator of a strongly continuous group (t) ()

which is given by
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I i (cosw nt) <x 0  *n > + W in Lwnt) <z 1, >)11
(4.33) j(t) xI

! -wn(sinwnt) x (co t) < xlcon>]t

na a nn + n J

for x - (xo0x 1)6 J. and t 4 0. Moreover, we introduce the operators

Then the second order system (4.31) can be formally associated with the

first order Cauchy problem

(4.34)
y a P

on the Hilbert space f by means of the identification x - (z,;). In

order to give a precise definition of the operators 8 and we

introduce, for any positive sequence a - (an}to n  0 0, the Hilbert

space

(xi :(~on:ln)) } N an[, nfxn n1
H o a x H a"

endowed with the inner product

n1 on on n, n~
,: x~x >a" n " Ion In "l x]n  ,x.;

and we identify_"f with the Hilbert spacelJ by means of the isometric

isomorphism

x - {(cxo)*n, (xlgen)}neb .

Then we may associate with the operator O. the family of operators

(25  on %, defined by

( x ((xInAn x on)I)nc045
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(a. {x a a nIAI '[IAlx2 + x2n cana Ux, n lon In] .

Each of these operators generates a strongly continuous group

Jo.) W E .~ which is given by

(Cos W 0 X +-1 (sin Wt) 1a(t)x xo n U iXn

- (sin t) on (cosut) XJz

for xe VC -and t a 0. Associated with the sequences (4.17) we

introduce the maps

(4.35) Y-

u--- ((0, (bnU >U))ntf ,'

x cnxo
n-i

Lemma 4.8

(i) If

(4.37) B BnIbII2 -,
n-I U

then (4.35) defines a bounded operator 6 J" '(U,%). In the case

U - ,.this condition is also sufficient.

(ii) f 11112

(4.38)
n-i. ln

then (4.36) defines a bounded operator fy W -, Y). In the case

Y - fthis condition is also sufficient..

(iii) If (4.37) holds and

(4.39) sup Ilbnl <

then, for every T i 0, there exists a constant b 0 0 such that
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T

II (T-s)P, u(s)dsjI Y b IIu(-)I 2
SL 2(OT;U)

2
for every u(-) * L (O,T;U).

(iv) If (4.38) holds and

2

(4.40) .sup 1nj <
ne eW fnly.

theu, for every T • 0, there exists a constant c > 0 such that

fly ()xII 2(o y , C IIXIIB
'I' q , r ( . X L 2(0,T;Y) 4 xI1

for every x C

Proof The statements () and (ii) are trivial. In order to prove

statement (iii) note that T
T w°1 (sinw (T-9))< b ,, u(s)>Uds

f fo(T-s) 8 u(s)ds T ~ owTs~b:s:d
0 L (cosw n (T-'s)) < b n u(s) >Uds

0

for every u(-) e L 2(O,T;U) and hence

T

II JBT-,)RB u(s) ds 1
0

T 
2

[J(cosw(T-s)) < bnU(s) >uds]

0

, (sup [nIlbnII2) nI (ii s c b n(l-s) u ds I10 m

T

I (coson(T-s))u(s) d. 112

0
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S onst. (sup Y al1b n 1llll(>
nr L2 (OT;U)

For the final inequality we have to make use of condition (4.32)

together with some properties of Fourier series

(see INGHAM [24] and also RUSSELL [39, p.12-14]).

Finally, let us assume that (4.38) and (4.40) are satisfied. Then the

following inequality holds for every x 4 £ and every y(.) Q L2 (0,T;Y)

<Y(')' Y ('xL2(oT;Y)

T T

Y(t)cosnotdtxou*wt y(t)sinwntdtxInC n
n1 0 0 Y

11 cy't12osw tdtll12
n1 n i Y()c° wnd Y

S W-211 112 2 n y( )sin tdtIl 2y

n-I 
n-l1

. Lo .uL~p, ItnIIy/BnILnl] |  II y()II
const. L (O,T;Y)

n-in o] n + Oin

L2(O,T;Y)

This proves statement (iV).
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Lema 4.9

Let the sequences b 4 U, c C6 Y, X. - 2 be given and suppose
Ln U n

that (4.32) holds. Then there exist sequences B U 0, Yn > o such that the

inequalities (4.37-40) are satisfied and ( if and

only if

Go b 2 2• IlbnIIu licnlliy
( 4 .4 1 ) 1 n l < -

n-l

Proof The necessity of condition (4.41) is trivial. Conversely, if (4.41)

is satisfied, then it is easy to see that the sequences

(IIcn11y2A Ani. IIbnI I IICnIa 1 or b.-o., c o,
f 2

(4.42) B0 - I/Il bnIIu IAnl, II bnhlu II cn
1I S 1 and b. + o,

lA b n 0, c n * o

/Ibn 11, bn +0

(4.43) - Ic112  . b - , n + 0,

I b o c 0
n

satisfy (4.37 - 4.40). Horeover, the sequence

Ilbn11 11 CII /IAn. Ibnlull IfcnII >

U YU Yl/nh'n Ijb I cnI

is bounded and thus 'y C Finally, IAn IBn > Yn for every

n r. and hence (O. BL .

- Y



If (4.41) is satisfied and Bn and yn are given by (4.42) and (4.43), res-

pectively, then it follows from Lena 4.9 and Lemma 4.8 that system (4.34)

satisfies the hypotheses (HI), (H2) and (H3) with

This time we will not assume that .C Li I B so that we are not

tied to an artificial identification of a certain Hilbert space with itself

which sometimes leads to unnecessary complications. Nevertheless, we can

apply Theorem 2.6 to our situation since the intermediate Hilbert space H

does not play any role in the proof of that result.

By Theorem 2.6, there exists a unique positive semidefinite strongly

continuous operator

fe(t) C-I (Us 8 B, 0 ; t T

which satisfies the differential Riccati equation associated with system

(4.34) and the performance index

T

(4.44) 3(u)= J[11 Y(t)112 I_ u(t)112] d2 .
Y U

0

This operator can be written in the form

(P(tx p01 1
(4.45) (t)x m inm ( 0 01 nm tsl

(p 10 ('x +p11 W
nm o nm lm t~ 1

for x a and 0 t T. The fact that (t) is self-adjoint results

in the condition
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p00(t) p1 m() (t 01m n(t) = - A (t)
Imn n nm

(4.46)
11 11(t)pmn(t) - Pnmr),
mn rim

for n, m P N and 0 6 t < T. In the next theorem we summarize our main

conclusions for the Cauchy problem (4.34) with the cost functional (4.44).

Theorem 4.10

Let the operators 0., be defined as above. Suppose that (4.41)

is satisfied and let B and Y be defined by (4.42) and (4.43), respectively.

Then the following statements hold.

(i) There exists a unique positive semidefinite operator V (t): 
-

of the form (4.45), (4.46) whose coefficients p 00O(t), p(t), 11(t) are

continuously differentiable on the interval (0,T] and satisfy the differential

Riccati equation

_Xn (t) + X p 1(t) + X p 1(t) + <c ,c mn nm n m mi noi

(4.47;1) 10 10
7 1 <bj,bk>U Pjm (t)pkn (t),

j k . m k

O00 00 11

pnO(t) - Xn Prim(t) + m P (t)

(4.47;2)

<j ,b.> UPg(t) kntl

.11 10 10
pron (t) + Pnm(t) + Pmn(t)

(4,47;3) 11 11
Fy I <b.,b p.. (t)
j k k>U  jm knt)

(4.47;4) p (T) - p 1O (T) - p 11 (T) 0 ,

for n,m Cc and 0 s t T.
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(ii) For every initial state (xX 1) there exists a unique optimal

control u(t), 0 < t s T, which minimizes the cost functional (4.44) subject

to (4.34). This optimal control is given by the feedback law

U(t) - - * ()x(t)

(4.48)

" b p 10(t)<x°(t),40> p1 1()x (t) >

nm ru HH

The optimal cost is

J(u) <( x , (o) (x 0'x I

" V > p<00 (0)<Xo, >

0 mnn rnm o'm

+ 2 <Xl,0> p 10 (0)<Xo, > + <Xln> p 11(0)<xl9 * >J.

As a specific example, consider the system

(4.50;1) ztt z, t > o, 0 < I,

(4.50;2) z(o,t) l u(t), z(l,t) - 0, t > o,

(4.50;3) z(&,o) - X (E), zt (E,0) = x1 (), 0 < E < 1,

1

(4.50;4) y(t) f J c(&)z(&,t)d&, t o,

0

in the Hilbert space

0 o0,11 x L-(0,11

which we identify with its dual. Then the operator

A - a, 9(A) _ H2 [O, 1] HO[0,11,
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has the eigev-alues X n w with corresponding eigenfunctions
n

On W -r in, .r.0 1. n OE 0- .and (CL ) is

given by

0 (A) x H [0.1]

a L 0 0

Moreover, the input operator for system (4.50) takes the form i u ( (o, -6u),

u , where 6' is the distribitional derivative of the Dirac delta

impulse at F- 0 (see CURTAIN-PRITCHARD (9]). Hence the following equations

hold for n & 1

b - ,(o) --2 noi
n n n

1

C n n /2 c(&)sinn1Trd
0

So condition (4.41) is satisfied if and only if

2
(4.51) i nl

n1l

and we may choose

2

Bn -max l n l  -inl
2  Y n A

n LAI l n A ni

(compare the formulae (4.42) and (4.43).

In particular, this means that the boundary control system (4.50) has continuous

solutions in the space

" q *J - L2 [0,1] X H-1 [o,l]

for every input u(-) 6 2  (o,-). This result has also been established by
lo 5
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LASIECKA-TRIGGIANI [32]. Moreover, condition (4.51) shows that C can be

chosen to be arbitrary bounded linear functional on L2 [o,lI]. The space
-1

-" depends on this functional. For example if Cn - n , then we

can choose A n and get

lJ I - jo,l) (A)

In this situation it is usual to take as the state space instead of

and identifying with its dual we have

HI I[o,l] x L2[o,1]0

and (t) mapsy. into . Hence the Riccati operator has a smoothing

effect with respect to L - L2[o,l] x H-1[0,1].

Remarks

Boundary value control problems for parabolic and hyperbolic systems

have been treated by a variety of authors, for example BALAKRISHNAN [2],

WASHBURN [42], LIONS [34], CURTAIN-PRITCHARD [9], LASIECKA-TRICCIANI (31],

[32]. The weakest conditions imposed to generate a solution of the Riccati

equation for hyperbolic systems are those of LASIECKA-TRICGIANI [32]. They

study precisely the boundary control problem (4.50) where the output operator

is the identity on L2 (o,l]. This case cannot be treated within our framework,

however, the Riccati operator in [32] is in t (OS) and does not have a

smoothing effect relative to L 2 [o,1 x H- [o,1].

PART II

In this part we develop a state space approach for linear retarded

functional differential equations (RFDE) having general delays in the state -

and input/output - variables. This will be done in the context of semigroup

theory. In particular, we extend the concept of structural operators

- 54 -
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(BERNIER-IANITIUS [4 ], MANITIUS [35], DELFOUR-MANITIUS [19], VINTER-KWONG

[41], DELFOUR [161) to RFDEs with delays in both input and output variables

and we develop a duality theory for this class of systems (Section 5). In

Section 6 we make use of these results in order to apply our general theory

of the linear quadratic optimal control problem to RFDEs with input/output

delays.

5. STATE SPACE THEORY FOR RETARDED SYSTEMS WITH DELAYS IN INPUT AND OUTPUT

5.1 Control systems with delays

We consider the linear RFDE

(5.1;1) x(t) - Lxt + But ,

(5.1;2) y(t) - Cxt .

where x(t) . le, u(t) 0 -Z, y(t) £ aP and xt, ut are defined by

x t(T) - x(t+r), ut (-r) - u(t+T) for -h < T $ 0 (0 < h < -).

Correspondingly L, B, C are bounded linear functionals from - C (-h,O; Pn)

respectively C (-hO; 2 ,m) into ,, n respectively itP. These can be

represented by matrix functions n(T), 6(r), '(1) in the following way

h hJ dn()() C* - dy~r. ) *C (-h.0;
)0

h

B& - J dB(C)C(-t), C E C (-h,O;

0

Without loss of generality we assume that the matrix functions n, B and y

are normalised, i.e. vanish for T f 0, are constant for T > h and left

continuous for 0 < T < h. A solution of (5.1;1) is a function

x a L2 (-h,.,; which is absolutely continuous with L - derivative on
loc

h-55-



every compact interval [0,T1], T > 0, and satisfies (5.1;1) for almost every

t . I t is well known chat (.1;1) admits a uniqu, solution x(t)-x(t;#,u),

t - h, for every input u(.) r L 2 (,m; Pm) and every initial condition

(5.2;l) x(o) = x(T) - * (T),

(5.2;2) u(r) - ,2 (T). - h . T < 0,

where # - (,#,@#,2)k ) &n x L2(-h,0; n) x L2 (-h,0; R .

Moreover, x(.;,u) depends continuously on * and u on compact intervals,
i.e. for any T > 0 there exists a K > o such that

,, x ( ; , .u ) j , K 1 ,I K[ 11 " . 11 u lI 2

W 1 2 (0,T; Itn) L2 (O.T; P. m )

2 1/2

where (1*1 "(0I, 1[ - 1(,1112 . 11,2112 ) for #

L2  L2

(see e.g. BORISOVIC-TURBABIN [ 5], DELFOUR-W4AITIUS [19], SAIANDN 140]). The

corresponding output y(') = y(.;$,u) is in L2  (o,.; |P) and depends -
lbc

in this space - continuously on # and u. The fundamental solution of

(5.1;1) will be denoted by X(t), t > -h, and is the nxn matrix valued

solution of (5.1;1) which corresponds to u E o and satisfies X(o) - I,

X(-r) - 0 for -h < ' c 0. Its Laplace transform is given by 4-1), where
h

L(e d(T)e

is the characteristic matrix of (5.1;1). It is well known that the forced

motions of (5.1;1) can be written in the form

t

x(t;o,u) - J X(t-s)Duads, t > 0.
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We also consider the transposed RFDE

(5.3;1) i(t) - 17zt + Cv t

(5.3;2) w(t) - BTzt

with initial data

(5.4;1) z(o) = e, z(T) -

(5.4;2) V(T) - *2(T), -h < T < 0,

0here ' - (,o,,,2) e xT. n 2 -h,o; n xL2(-h~o; lP).

The unique solution of (5.3;1) and (5.4) will be denoted by z(t) - z(t;tv),

t I -h, and the corresponding output by w(t) - w(t;*,v), t > o.

5.2 State Concepts and Duality

The 'classical' way of introducing the state of a delay system is to

specify an initial function of suitable length which describes the past history

of the solution. This is due to the existence and uniqueness of the solution

to the delay equation (in our case (5.1)) and its continuous dependence on

the initial function (in our case (5.2)). Correspondingly, we may define the

state of system (5.1) at time t > o to be the triple.

;(t) - (x(t),x tu t

and analogously, the state of the transposed system (5.3) at time t > o

will be given by

-. i(t) - (z(t),zt,vt) _

The idea of including the input segment in the state of the system was first

sugge 4.d by ICHIKAWA (22], [23].

In order to describe the duality relation between the systems (5.1) and

(5.3), we need an alternative state concept. For this we replace the initial
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functions #1 and #2 of the state- and input- variables by additional forcing

terms of suitable length on the right-hand side of both equations in (5.1).

These terms completely determine the future behaviour of the solution and the

output. More precisely, we rewrite system (5.1), (5.2) as

t t

(5.5;1) i(t) - 0dn()x(t-T), fodB(T)u(t-T) + f (t).x(o) - f

t

(5.5;2) y(t) - odY(T)x(t-T) + f2 (t), t i 0

where the triple

1 (foflf 2 ) - xnx L 2 [Oh; nI] xL 2(O,h; p

is given by

(5.6;1) f 0  0

h h

(5.6;2) - J d (T) d1 (t-) + d8) 2(t-t),
t t

h

(5.6;3) ft) - dy(T)#I(t-T), 0 s t < h
t

Remarks 5.1

(i) The expressions on the right-hand side of (5.6;2) and (5.6;3) are well

defined as square integrable functions on the interval [o,h] (see e.g.

DELFOUR-MANITIUS (19] or SALAMON (40] ). Each of them can be

interpreted as the convolution of a Borel-measure on the interval [o.h] with

an L 2-function on the interval [-ho].

(ii) The product space - x L2 (oh; 1 n) x L(oh; P) can be

identified with the dual space of T L n 2(-h.o; I x L(-ho;

via the duality pairing
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T T h

. fo + f T (_)f()ds + f T (,s)f2(s)ds

0 0

T o
for * T and f E * In the same manner we can identify the
product space W_* - R, n L2(o.h; e) x L2(owh; 1K with the dual space

of X. - Nt x L2(-h,o; ie.n ) x L 2(-h.o; e.).

Now it is easy to see that the solution x(t) and the output y(t) of

system (5.5) vanish for t > o if and only if f - o. This fact motivates

the definition of the initial state of system (5.5) to be the triple f le

Correspondingly the state of (5.5) at time t > o is the triple

t t T
x(t) - (x(t),x ,y ) 6 x

where the function components x t g L2(o,h; Rn) and yt a L2(o,h; RP) are

the forcing terms of system (5.5) after a time shift. These are given by

t+8 t+s
(5.7;1) xt(s) = dn(T)x(t+s-r) + d8(T)u(t+S-T) + fI(t+S)

f f

t s

(5.7;2) yt(a) f dy(r)x(t+s-r) + f2(t+s), o < s < h,

where fl(t) and f2 (t) are defined to be zero if t/ [o,h].

The idea of defining the state of a delay equation through the forcing term

rather than the solution segment was first suggested by MILLER (37] for

Volterra integro-differential equations. The corresponding duality relation

has been discovered by BURNS and HERDMAN [ 6]. Further references in this

direction can be found in SALAMON [40].

The same ideas as above can be applied to the transposed equation (5.3).

For this we rewrite system (5.3), (5.4) in the following way.
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t t

(S.8;1) W(t) - JodnT(T)z(t-T)+ JodyT(T)v(t-t)+gl(t). z(o) S

t

(5.8;2) .w(t) - JdT(r)z(t-c) + g2(t), t t" 0,

where the triple

a - 1,l g2) x - ( L 2 (o,h;t .) x L2(o,h; to)

is given by

(5.9;1) o -

h h

(5.9;2) gIW tdT W 1 (T) +(tt) * dyT(T)2 (t-r),

h
(5.9;3) S2(t) J d T(r)*(t-0), o < t < h.

The initial state of system (5.8) is the triple g . * and the state at

time t > o is given by

t 2 t

:ZWt - -(t),z , W) Q X*

where the function components zt  L 2(o,h; tn) and wt e L 2(oh;

are of the form

t+s t+s

(5.lO;1) st() - J dT (T)z(ts-r) + j dyT(T)v(t •-T) + + (t )
5 a

t+8

(5.10;2) vt(s) - J d$T(T)z(t S-T) a2 (t+s), o * s 6 h

These expressions can be obtained from equation (5.8) through a time shift.

Smmarizing out situation, we have introduced two different notions of

the state both for the original RIDE (5.1) and for the transposed RIDE (5.3).

A duality relation between these two equations involves both state concept.
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The dual state concept (forcing terms) for the original system (5.1) is dual

to the 'classical' state concept (solution segments) for the transposed

system (5.3). More, precisely, we have the following result.

Theorem 5.2 Let u(-) E L 2o.-; ') and v(.) e L2o,-; IV p ) be 
c ogiven.

T* T(i) Let f e T  and * r .T. Moreover, suppose that

at t T1(t) - (x(t),x ,y ) a X is the corresponding state of (5.5) with output

y(t) and that 1(t) - (z(t),zC,v) t V e is the state of (5.3), (5.4) at time

t a o with output w(t). Then

<*,x(t)> * -z(t),f> T

t t

-J wT(t-s)u(s)ds - If vT(t-s)yis)ds, t > o
o 0

(ii) Leto c Eand g t 3 *. Moreover, suppose that i(t) - (x(t),xt ut)

is the corresponding state of (5.1), (5.2) with output y(t) and that

i(t) - (z(t),zt,wt) e * is the state of (5.8) at time t > o with output.

w(t). Then

*s ( ) ,- (t),*

ae 9 )e
t t

f J w T(t-s)u(s)ds -fo v T(t-s)y(s)ds, t >. o
o0

Proof We will only give a proof of statement (i). For this let us assume

that z(t), t a - h, is the unique solution of (5.3), (5.4) with output w(t),

t >, o, and that x(t), t > o. is the unique solution of (5.5) with output

1t 2 n t 2
y(t), t > o. Moreover, let x ( L2[o,h; nJ, y L [oh; tp] be given

by (5.7) and define x(t) - o, u(t) - o for t < o. Then it is easy to see

that

(z(t-s)Lxs  [LTzt_I]Tx(.))ds

0
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and analogous equations hold for B and C. Moreover

t
,OT (t) - 3 T (fo - ! T z(t-sxsds

t 

0

This implies

OT X(t) -z T(t)f,

+ 1h 10 T (5 )x t sds + 02 . ~ d

00

z T (t.S)f I Wds - h v T c-S)f 2 s)ds

t

z tS L .1 +IBu 8 fr (s)] ds
0

t h-t

J0 LTzt_, + CTvt_]T (s)d. + J #lTSfl 1(t+&)ds
0

#IT
0 0

t h

-JO XTt@f's - IT ,(t-S)f l(s)da

f -Ttsf2sd J.#ZTtsf2 sds
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(:.)dTv T (s-ds -3* f 2 (sjl
o 0

t t

j J WT(t-s)u(s)ds - Jo vT(t-s)y(s)ds.

5.3 Semigroups and structural operators

Throughout this section we restrict our discussion to the homogeneous

systems (5.1) and (5.5) respectively (5.3) and (5.8) which means that u(t) - 0

respectively v(t) - 0 for t > o.

The evolution of the systems (5.1) and (5.3) in terms of the 'classical'

state concept (solution segments) can be described by strongly continuous

semigroups

The semigroup Mt) on E associates with every 0 6 the state

(t) - (t) - (x(t).xt,ut) '

of (5.1), (5.2) at time t > o which corresponds to the input u(s) - o, s > o.

Its infinitesimal generator is given by

(oZ) -W 1~, l ( 0 n, '2(-h,0 °- o, o -oeXI1 1,'0 ~ n)2 1 2 0

14 r, -- - ' (04, (o) -0)

0 - (LO$+B4,2 ;1.;2)

(SALAMON [*o, Theorem 1.2.6]). The semigroup T T(t) is defined analogously

and generated by the operator

, (QT ) - {I eTtal~wlt ' .(-ho; )26 W '2 (-ho; WP);

-~ . - 1 2(o),* (0) - 0)

CL, (LTI*I+CT2,;2 .2

An interpretation of the adjoint semigroups ST (t), T  X and

(t): can be given through the dual state concept (forcing terms)
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for the systems (5.1) and (5.3). More precisely, ve have the folloving

result which is a direct consequence to Theorem 5.2.

Corollary 5.3

7* t *
(i) Let f . * be given and let ;(t) - (x(t),xt,yt) " y be the state

of system (5.5) at time t > o corresponding to the input u(.) = 0. Then

2 T*
x(t) - Mtf.

(ii) Let g i X* be given and let z(t) - (z(t).zt,vt)f * be the state

of system (5.8) at time t > o corresponding to the input v(.) 0 0. Then
W- *(t)s.

Our next result is an explicit characterization of the infinitesimal generators

a Tand a of the semigroups . T *t and *(t)

Proposition 5.4

Wi) Let f, d fs Y be given. Then f . (LT * ) and a*T*f - d if and

only if the folloving equations hold
h

(5.11;1) n(h)f0 - d0 + J dl(s)ds,

h

(5.11;2) f(t) I [(t)-n(h)]f ° - - J d1Cs)ds, o . t < h.
Jt

h

(5.11;3) ft) + y(t)-Y(h)]f ° - - Jtd 2(s)ds, o f t s h.

(ii) Let a, k 4 be given. Then & , ( *) and CL*g- k if and

only if
h

(5.12;1) n (h)go 0  + k Ik (sds

(5.12;2) Clt) + [n T t- (h)jg0  k JIk(s)ds, o t h,

(5.12;3) S Mt + 10 Ct)-07(h)]g0  i k Jk(s)ds. o t h i.
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Proof Obviously it is enough to prove statement (i). First note that

f ( * and ( T*f - d if and only if -4~d < (4 Tof for every

*T . Hence statement (i) is a consequence of

40oTd .j 1T(-s)d (s)ds I (-s)d (s)ds

Ii h

ft ;,T(_t) Jd2(s)dsdt

and

h h

ITJ ,( )dn()f + (- TQT)dY(o

hi h

+ f lT(_)n ()fo + f ;T(h () s~o

h h

+ L;T ()ds + f' W ds

hh

*I *l(o)n(h)fo +4 J ;lT_s)fl(s) - yn(s)fo - (h)f0)ds

h

* 10 2T ,_) (l~) *Y(s)fo y~n)f0]ds I2
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The duality relation between the systems (5.1) and (5.3) can now be

described through the following four semigroups

T (c t ) :  TT

The semigroups on the left-hand side correspond to the RFDE (5.1) and those

on the right-hand side to the transposed RFDE (5.3). On each side the

upper semigroup describes the respective equation within the 'classical'

state concept (solution segments) and the semigroup below within the dual

state concept (forcing terms). A diagonal relation is actually given by

functional analytic duality theory.

The relation between the two state concepts can be described by a so-called

structural operator

which associates with every * E the corresponding triple

(5.13) '1O = f E xT* (f given by (5.6)).

It is easy to see that this operator maps every state x(t) e F of system

(5.1) into the corresponding state x(t) 6 of system (5.5) which is

given by (5.7) and (5.6). This fact together with corollary 5.3 shows

that the following diagram commutes

X

T* 
66W
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A.other important fact is that the adjoint operator -T* T

plays the same role for the transposed RFDE (5.3) as the structural operator

' : . - . does for the original RFDE (5.1). These properties are

s,,-arized in the theorem below.

Theorem 5.5

(i) ' S (t T* (t) ' S T~t ( t) '1

(ii) if~ E (CL), then ana~~d

S * - * & .

(iv) The adjoint operator j : T X maps every 7 4 .T into

the triple % - g C- (* which is given by (5.9).

Proof Statement (i) follows from the above considerations, the statements

(ii) and (iii) are immediate consequences of (i) and statement (iv) can be

proved straight forwardly.

A structural operator of the above type has first been introduced in

BERNIER-MANITIUS [ 4], DELFOUR-MANITIUS [19] for retarded systems with state

delays only and later on by VINTER-KWIONG (41], DELFOUR [161 for RFDEs with

delays in the state and control variables. An extension to neutral systems

can be found in SALAMON [401.

5.4. Abstract Cauchy problems

In order to describe the action of the output operators for the RFDEs

(5.1) and (5.3) - each within the two state concepts of section 5.2 - we
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introduce the following four subspaces

W - (4 * *1l r W1'2 (-h,o; n),o - (o),

WT . 10( T1

,. ie.I1, C- W ' (-h~o; R .)AP1 -~ (0))

.*) -(f T* X f 2 (.) Y(.)foe W1 , 2 (oh; kP) f2 (h) - o)

- (a e g2 (.)+T(.)g°G W1 ' 2 (oh; m),g 2(h) 0)

These have the following properties.

Remarks 5.6

(i) The subspaces '4 T ,  -OYT * and are dense in X , T, X T*

and -X *, respectively. Moreover, -1- and ) T* become Hilbert spaces if

they are endowed with the norms

0 0

1!#112 . li,°012 + Jh , >l@ 2 dT + 11 2( 112 dT,. OE
-h f h

h
1lf l2 . fIIol2 + f 11f1(S)II ds

h2+o j 11 [f 2 ( s) y(s)f]ll 2 ds, f "

0

Topologies on L T and V can be defined analogously.

(ii) The dual spaces , )T -WT* and 2 *are extensions of

, T *and X respectively. Thus we obtain the inclusions

- . X c -6, T C ;ET r -DT.

VT*C. T* -t T *, C e C
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with continuous, dense embeddings.

(iii) It is easy to see that (h) 4- (t , ),

S (h) S '(T,*)) T(h) e.j~", 1 T and

*(h) ( *,V). By duality, we obtain (h) f (-J

4' ~(h) (.~~T T T h) ~ ~ * and (h e ** *

Before introducing the input - and output - operators, we prove that

the spaces -. -X) T, -0 T and )Y are invariant under the semigroups

(t), :f ct), S T* (t) and S *(t), respectively. For this we neid

the following preliminary result.

Lena 5.7 Let f G a T* be given and let d . L2 (o,h; RP) satisfy

h
f2(a) + [y(S) - y(h)]f ° 

- - J d(o)do, o $ s s h.

moreover, let x(') I. W1, 2 (o,t; tn) be chosen such that x(o) - fo and let

y 6 L2(o,h; jtP) be defined by (5.7;2). Then

yt (s) + [y(s) - y(h)] x(t)

h t+o

" - J I dy(T)(t+o-t) + d(t+o)Jda , o s , . h

Proof Let us define x(s) - f0 for s < o and d(o) - 0 for a 4 [o,h].

Then the equation

h

J dy(T)x(t~s-r) - [y(h)-y(t+s)]f
0

t+S

holds for all t,s >, o. This implies
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h t,+a

J( f dy(T)((t7c-T) + d(t)] da

h h h-t

" fI J dy(r)x(t+o-)da + J d(t+a)da
a0

h h

" J dy(r) J x(t+o-T)ds + f d(o)do

t+s

[y(h) - y(s)] x(t) - J dy(T)x(t+s-T) + f2 (t+s)
f

S_ yt (s) _ [y(s) - y(h)]x(t). 1Z2

Now we are in the position to prove the desired invariance properties

of the subspaces T, 'T, ) T* and .

Proposition 5.8

(i) (t) is a strongly continuous semigroup on and .

(ii) S T(t) is a strongly continuous semigroup on TY and T. T

(iii) IT*(t) is a strongly continuous semigroup on -, T* and )T*

(iv) $ *(t) is a strongly continuous semigroup on ).) and "4Y.

(v) V (~ LT*) and ~ f ,~ T*).
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(vi) C U T.O*) and * 6 * .

Proof First note that every solution x(t) of (5.5) is absolutely

continuous for t > o and that its L2-derivative depends continuously on

4 T*(SALAON 140 , Theorem 1.2.3 (i)]. This shows that ' (t) is a

strongly continuous semigroup on

Now let f 6 V T* be given and let x(-) 6 W ,2(o.; Ikn) be the
loc

corresponding solution of (5.5) with u(t) S o. Moreover let y(t), t >: o,

be the output of (5.5) and let xt and yt be given by (5.7). Then

( T*(t- - (x(t).xt,y t) (Corollary 5.3) and hence it follows from Lema

5.7 that the function t -* T*(t)f is continuous with values in -)T*

and depends in this space continuously on f jT.

The same considerations - applied to the transposed system (5.3) - show

that T(t) is a semigroup on 4 T and that S *(t) is s semigroup on

•~Y . The remaining assertations in (i), (ii), (iii) and (iv) follow by

duality.

In order to prove (v) and (vi), let # e I be given. Then Lemma 5.7-

applied to f - o, t = h, and x(s) = *l(s-h) for o f s . h - shows that

e T* satisfies the equation

2 (s) + [y(s) - y(h)][OO] °

h h

=" - J dy(r)jl(a-T)d'o a 5 h

Hence '4 * is in T* and depends in this space continuously on 0 ft

We conclude that gC ( ,VT). The remaining assertions of (v) and (vi)

follow from this fact by analogy and duality.

Now let us introduce the output operators

T* '
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by defining
h

T J dy(-)10 (-r)' ) T
0

h*r, J dB'r)O 1 (-'), * T

0

T *f . f2(a) f V

a g _ 82(o), *

Then the adjoint operators

5 T -P

B : -- p p

describe the input action for the systems (5.1) and (5.3). More precisely,

we have the following result for the RFDE (5.1). The corresponding statements

for the transposed RFDE (5.3) can be formulated analogously.

Theorem 5.9 Let u(-) 4E L2  (o,; m) be given

(i) Let 4 4, I and let x(t) 6 be the corresponding state of (5.1),

(5.2) at time t o. Then x(t), t I o , is a continuous function with

values in ' and depends in this space continuously on 1 9, and

u(.) 4 L 2e(o,'; m) . oreover
lbc t

(5.-i t) St) - (t)# f f (t-s) u(s)ds, t o,

where the integral is to be understood in the Hilbert space . The output

y(t) of(5.l)is given by

(5.14;2) y(t) - £ (t). t 0 a.

T*
(ii) Let f C& TT*and let x (t) 6 T be the corresponding state of (5.5)
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at time t 1 a. Then x(t), t 3 0, is a continuous function with values

in VT e and depends in this space continuously on f a and

u(.) 4 L2  (a.0; 12). Moreoverloc I
t

(5.15;1) i(t) - S T(t)f ( -  8Tusds t o

0

where the integral is to be understc.. in the Hilbert space -)j T*. The

output y(t) of (5.5) is given by

(5.15;2) y(t) . x* i(t). t ,- o.

Proof If u(.) o. then the statements of the theorem follow immediately

from Proposition 5.8 (i), (iii) together with the definition of the operators

and f o So we can restrict ourselves to the case - and f -a o.

First of all, the same arguments as in the beginning of the proof of

Proposition 5.8 show that ;(t) is continuous with values in 13 and depends

in this space continuously an u(.) % L2oc(O,9, % )a Secondly, we establish

equation (5.14;1). For this let g 4'0" be given, let i(t) a X* be the

corresponding state of (5.8) with v(.) = o and let W (t), t 3 o, be the

output of (5.8). Then z(t) - 4 *(t)g r .* (Corollary 5.3 and Proposition

5.8 (iv)) and w(t) z * (t), by definition of the operator Hena

it follows from Theorem 5.2 (ii) that the following equation holds for every

t a

cg,i(t)>

t

- J vT(t-s)u(s)ds
- J " 8 4(t-s)gu(s). I do
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4 9f (t-s) bu(s)ds

0 

This proves statement (i).

Nov recall that i(t) 0i(t) as long as f - o and - a. Hence it

follows from Ci) and Proposition 5.8 (v) that xkt), t > o, is continuous

with values in and depends in this space continuously on

U(-) L C,-; I). Finally, equation (5.15;1) can be established in anu. Lloc(O'

analogous manner as (5.14;1)-

The previous theorem shows that the evolution of the state i(t)

of the RFDE(5.I) in terms of the 'classical' state concept can be formally

described through the abstract Cauchy problem

dx t) _ 0. ;t) + B u(t), i(o)-=

y(t) - V 1(t),

in the Hilbert space 13 respectively 2)
Analogously, the state x(t) e X of equation (5.5) in terms of the

dual state concept defines a mild solution of the abstract Cauchy problem.

d ZC) T*2 1 T*,~io
dt x t W -C ) fT:*

y(t) - * x(t),

in the Hilbert space -VT* respectively hT*.

If we consider the Cauchy problem E (respectively E ) in the smaller

state space -U) (respectively "* T*), then the output operator f (respectively

T*) will be bounded and the input operator 13 (respectively 13 T*) unbounded.

Nevertheless, the solution of E (respectively ZT*) in the state space

(respectivelyD T*) is well defined, since the input operator satisfies the

hypothesis (HI) of Section 2. More precisely, the operator 1 (respectively
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L3T ) has the following property which follows directly from Theorem 5.9.

Remark 5.10

For every T > o there exists some constant b T o such that the inequalities

T

jI SrT-s) B u(s)dsjj bh u(-) i
0 L (o,T; f.)

T

II (T-* ) - 3 T*u (s)dsl b T1l u(') 11 2
o *L 2 (o ,T; I~m)

hold for every u(.) L2 (o,T; m)

If we consider the Cauchy problem E (respectively E TT ) in the larger

space " (respectively k)T*), then the input operator will be bounded

and the output operator unbounded. Nevertheless, the output of the system

is well defined as a locally square integrable function since the output

operator satisfies the hypothesis (H2) of Section 2. More precisely, the

operator (respectively T) has the following property.

Remark 5.11 For every T > o there exists some constant cT > o such that

the inequalities

L2 (o,T; ,

I T* T* (_)f CT I 1
L2(oT; PP)

hold for every # t* 1 and every f

This follows by duality from the fact that the adjoint operators T

and a are the input operators of the transposed equation (5.3) and hence

satisfy analogous inequalities as those in Remark 5.10.
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Now let us apply Theorem 5.9 to the transposed RIDE (5.3). Then we

obtain that the state ;(t) t WT of (5.3) in terms of the 'classical' state

concept defines a mild solution of the Cauchy problem

dT
T dt ;wt - a. 1(t) + V TVW. i(o)- ,

W(t) - B T;(t)

(to be considered in the Hilbert spaces 'WT and V) whereas as the

state ;(t) 6 * of (5.8) in terms of the dual state concept defines a mild

solution of the Cauchy problem

d ;(t) - *V(t), (o) -g.

V(t)- 

(to be considered in the Hilbert spaces er* and

Sumarizing our situation we have to deal with the four Cauchy problems

EE
T

a E*

These are related in the same manner as the semigroups S(t), 4T(t) T (t) and

S*(t). More precisely, the Cauchy problems on the left-hand side corresponds

to the RFDE (5.1) and those on the right-hand side to the transposed RFDE (5.3).

On each side the upper Cauchy problem describes the respective equation with

the 'classical' state concept (solution segments) and the Cauchy problem

below within the dual state concept (forcing terms). A diagonal relation is

actually given by functional analytic duality theory.

The vertical relations between the four Cauchy problem above may also
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II

be described through the structural operators and . In particular,

it follows from Theorem 5.9, that x(t) ; x(t), t > o, defines a mild

solution of E if x(t), t o, is a mild solution of E. This fact is also

a consequence of Theorem 5.5 together with the following relations between

the various input/output operators by means of the structural operator

Proposition 5.12

aT* T*~~

; ~T* ~ T . S* *

Proof Let us first consider as an operator from I into -V T*

(Proposition 5.8) and let * E4 . Then , ) 6 T* and

h

* [ 2 (0) J dy("-r) -c

The equation - can be established analogously by the use of

Theorem 5.5 (iv) and the remaining assertions of the proposition follow by

duality.

Finally, note that the Cauchy problems E, ET , E  and £ may also be

understood in a strong sense. In particular, if * E)s and

u(.) L [oL; 2 ]. then it can be shown that the corresponding mildloc

solution ;(t) of I is in fact a strong solution. This means that

;(t), t i o , is a continuous function with values in Xj , that its

derivative exists as a locally square (Bochner -) integrable function with

values in the larger space a and that the first equation in E is

satisfied in the Hilbert space 2P for almost every t .> o (SALAMON ( 40

Theorem 1.3.4]). In order to make this rigorous, we need the fact that C.

can be interpreted as a bounded operator from 'I to . This means

that '-) is the domain of w. when a is regarded as an unbounded, closed

operator on
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Proposition 5.13

(Co. VT tTOL)

Proof First note that -aT: ( T) C T and hence

O)T*) aT*d) nT*

Now let f F -XT* Then f 4 i)T* ( CO *I if and only if the map

, -. T T T* T

extends to a bounded linear functional on T. But . ( ) if and

1 2,2 '; n 2 1,2 p o 1 2
only if * f. W2 (-h,o; (K), * W (-h,o; ikP ), Wo - 1(o), P (o) 0,

and WI(o) - LT W + CT02; and the following equation holds for every

T%
< CLT,, f>

L T .-If> T, T*
hh

- I T (-)dn(,)f° + *I2T (-)dy(T)f°

a 0

h h* o ;1 T('s)f'(s)ds fo *2T -)2(sd

h

o 0

+ 2T(s)[f2(s) + y(s)fo - y(h)fJlds
0

(compare the proof of Proposition 5.4). The latter expression defines a
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bounded linear functional on " X &Tl 1 ' 2 (-h,o; Kn)I * - 11(o))

if and only if there exists a G L 2(o,h; P) such that the following

equation holds for every 112 e W1, 2(_-h,o; IP) satisfying * 2 (0) - o

h
fo;2T(-s)(f2(s) y(s)f ° - y(h)f°]ds

fh 2Th 
h0 52 T-)d(s)ds " - h ;2T(_,) f d(a)dods.

This is equivalent to f . Tr*. We conclude that jT* _ T, ( a T * .

Analogous arguments show that v-* - ,( *). The remaining

assertion of Proposition 5.13 follow by duality.

6. THE LINEAR QUADRATIC OPTIMAL CONTROL PROBLEM

6.1 The finite time case

In the previous section we have developed two state space descriptions

for the RFDE (5.1). Moreover, we have shown that the corresponding Cauchy

problems2: and ZT* both satisfy the hypotheses (HI), (H2) and (H3) of Sectivoi

2 in suitably chosen Hilbert spaces (Remark 5.10 and Remark 5.11). This

allows us to apply the results of Section 2 to the RFDE (5.1) within the

state concepts of Sub-section 5.2 . For this sake we consider the cost

functional

T

(6.1) T T(u) N [i y(t)I1 2 + uT(t) Ru(t)]dt

associated with the systems (5. )and (5.5) where Re is a positive

definite matrix.

Remarks 6.1 For simplicity, we assume there is no weight on the final state

i(T) respectively x(T) in the cost functional 5. (u). Such a weight could
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be introduced by means of a semi-definite operator 
C: )T* .. T

leading to the additional term<x(t), q (t)"T.  in the performance index

(u). However, such a term could never be of the form xT(T)4ox(t) with

smne non-zero positive semi-definite matrix C nxn since the map

f - f0 from T* into R n cannot be extended to a bounded linear

functional on T*

The following result is now a direct consequence of Theorem 2.6

and Proposition 2.7.

Theorem 6.2

(i) There exists a unique strongly continuous operator family

w(t) r EL.(.' 1*), 0 6 t 6 T, such that the function w(t)# is continuously

differentiable in 110 * for every * and satisfies the equation

d ct)* + C*w(t)$ + lr(t) (2. *
dt

(6.2) - ,.(t) R-1 A *ir(t)o +q* O - 0,

w(T)o w 0.

(ii) There exists a unique strongly continuous operator family

S j. * )9 0 s t 4 T. such that the function e(t)f is

continuously differentiable in YT for every f E and satisfies

the equation

dt
d. ? (t) f + ()T Ip(t) f + (t) a T f

(6.3) -(t) * R 1 g T W(,)f +t f T T*f .Q,

(T)- 0.
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(iii) if ir(t) ~ (,~)and 'e(t) (I(-T ~T 0 < t T

are the 5olution operators of (6.2) and (6.3), then

(6.4) w(t) - 5* V(t)!3 , 0 < t < T.

(iv) There exists a unique optimal control which mnimi'zes the

performance index (6.1) subject to (5.1) and (5.2). This optimal

control is given by the feedback control low

uCt) -- R71 * it(t) ; (t)

(6.5) R71  (t) x (t)

" - 1-/T ( t) (t)

Where w(t) -C V~)*) and '( t) I 4 (% T*, T) are given by

(6.2) and (6.3). The optimal cost corresponding to the initial state

X is

-T(u) = < * (0)

(6.6)

< f. )(o~f > X , XT

T*.
-ohere f is* . s the initial state of (5.5.1).

Proof

The statements (i), (ii) and (iv) follow iediately from Theorem 2.6

and Proposition 2.7. In order to prove (iii), let T (t) G (') T * , )T) be

the unique solution of (6.3) and let w(t) t .(, ' *) be defined by (6.4).
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Moreover, let Q and f: Then -sinceTThen- sic) ~ 1 ~. -

the function w(t) - 04* 6(t)f, 0 < t T, in continuously differentiable

with values iniz and satisfies the following equation

d
dt o -~) a r*w o r+ )

- w(t)e AR7
1A w: twt + q * 14

-d *" 0) ( f + L * 4W f + * 6 0 4 a

- F(t) IT R-1  T V~tf +~, T*

,,0

(See Theorem 5.5 and Proposition 5.12). Now statement (iii) follows

from the uniqueness of the solution of (6.2). Ca

Note that an analogous relation as (6.4) has been shown in DELFOUR-LEE-

MANITIUS (14] and VINTER-KWONG [411 for RFDES with undelayed input/output -

variables.
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6.2 Stabilizability and detectability

In this section we investigate the sufficient conditions (H), (HS)

for the unique solvability of the algebraic Riccati equation (Chapter 3) in

T*
the case of the systems Z and i . We will not consider these hypotheses

in their weakest form but have a look at the slightly stronger properties

of stabilizability and detectability.

Definition 6.3

(i) System Z is said to be stabilizable if there exists a feedback operator

K . , , such that the closed loop semigroup Wt -i

defined by

t

(6.7) SK )(00 (t00 + J o'(t-s) K84 (s)4ids

for t > o and 0 EV' is exponentially stable.

(ii) System ZT* is said to be stabilizable if there exists a feedback

operator -X f <j such that the closed loop semigroup

*(t) C (,.T*) defined by

t

for t ~ o and f 4- -) T is exponentially stable.
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Remarks 6.4

i) Note that the integral term in (6.7) is a bounded linear operator

from V to ) (Remark 5.10) and hence 1fX(t) is also a strongly

continuous semigroup on X and

(ii) It follows from Remark (5.6) (iii) that for every t > h.

(iii) The stability of the semigroup S (t) is independent of the choice

of the state space -0, or . In order to see this, note that

the operator ,&I- OX - : Tr provides a similarity action

between (t) W e (10) and cSK (t) 6if ,k& > 0 is

sufficiently large. Moreover, it follows from (ii) that the stability of

- (t) on the Hilbert space implies the stability on k and the

stability on 2 implies the stability on V- ,

(iv) The same arguments as above show that the closed loop semigroup

T *(t) (- T*) can be restricted to a semigroup on g T* or T*

and that its stability is independent of the choice of the state space

T T* C "*
,' *, *or .. 2 T *

(v) Let 1'0 T i .,,T ) be given and define

(6 .9) )(X 6 1 .T)

Then the following equation holds for every t > o
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(6.10) ~ '()- SK* (t

In fact, it follows from Theorem 5.5 and Proposition 5.12 that for

every * the function x(t) X) T*. t z a, defines

a solution of (6.8) with f - *

6 T* ~ T

(vi) Every r. T f (W* , can be represented as

h

(6.11) XT*f - K fm K (-s)f(s)ds J K (-s)f 2(sds
0 ja1

wahere K2(-) or L 2 (-h ;R' 6 W . -~;rx)and K-

Moreover, let us again suppose tha " - X)(T*and consider the control law

U(O) - )T* k(t

- K 0x(t) + fJ 0 Ks-T)dn(r)x(t-s)ds

(6.12) h -r

+ 10 K 2(s-T)dy(T)x(t-s)ds

4fh 
T

oj L0 Kl(s-T)dB(T)u(t-s)ds
for system (5.1). Then it follows from Equation (6.7) and Theorem 5.9

that for every solution pair x(-) C-6 (-h,-; V) 1 W '(00-; n)
boc loc

U(-) 4CL£ (0.W; &I) of (5.1), (5.2). (6.12) the corresponding sat e

;(t (x(t),x~ t ud at time t 0 is given by
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(6.13) (t) - s (t)$

By (6.10), this implies that x(t) - X (t) T* is given by

x)- fT*(t) .

(vii) If X 6 V, ) is given by (6.9) then the exponential stability

of S (t on X is equivalent to that of SK T*(t) on o T*. In

fact , it follows from Equation "6.7) and Theorem 5.9 that

(6.14) range 4 T*(h) C. range !"

and hence Equation (6.10) shows that the stability of cic(t) implies rthat

of J *KT(t). The converse implication is a consequence of the fact that

XK(0)4 - (x(t),xt,ut) and

1(t). - r (T*t ,]o. u(t) _ KT* £ *(t , t o

for every solution pair x(t),u(t), t>-h, of the closed loop system (5.1),

(5.2), (6.12) with # G.

Having collected the basic properties of the feedback semigroups fK (t)

and JKT*(t), we are now in the position to prove the following stabilizability

criterion.

Theorem 6.5

The following statements are equivalent.

(i) System Z is stabilizable.

(ii) There exists a feedbackC operator ) ), i. such that the

closed loop semigroup (t) C (")6 defined by (6.7) for t > o

and ) is exponentially stable.

(iii) System E is stabilizable.
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(iv) There exists a feedback operator XT* . U T msuch that

the closed loop semigroup ISIK TWt( V T* defined by (6.8)

for t > o and f C V T * is exponentially stable.

(v) For every X 6. , Re A a o,

rank [AO(), B(e')] = n.

Proo f

The implications "(iii) 4 (i) -0 (ii)" and "(iii) -+ (iv)" follow from

Remark 6.4.

Now we will prove that (v) implies (iii). Note that it has been shown

in SALAMON ( 4 O , Theorem 5.2.11 and Corollary 5.3.3] that (v) implies

the existence of a stabilizing control law of the form (6.12) for the system

(5.1) where K1 (.) 6 W1 '2 -h,o; *mxn), Ko - K I(o) and K2(T) = 0. This means

that every solution pair x(t), u(t), t > -h, of (5.1), (5.2), (6.12) with

k tends to zero with an exponential decay rate which is independent of

*. This shows that the semigroup Xk T(c) is stable on ) T * (Remark 6.4

(vi)) and hence on "XA) T* (Remark 6.4 (iv)).

It remains to show that (ii) and (iv) imply (v). For this sake assume

that there exists a X , Re X > o, and a non-zero vector x C.
O

such that x T(A) - o and xTB(e ) = o and define t: - (xo , e 
A . 0) e T.

000

Then it is easy to see that. T - X,0 T 0 and hence

C 4, - -0 (Theorem 5.5 and Proposition 5.12). Now

equation (6.8) and (6.7) show that 1J(t)O - X(t)4, - e X4 and

3*~~ ~ %c f*~ 4 - e~t *4- for every XT* e( .>T* M

and every R :(, t.). Since * + 0 and ! *, + o, this shows that

(ii) and (iv) are not satisfied.

The next result is obtained by dualising Theorem 6.5.
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Corollary 6.6

The following sfatements are equivalent

(i) System E is detectable in the sense that there exists an output

injection operator , c ; ( such that the closed loop semigroup

WS.(t) O E (>) generated by Q + . : ) * ) is exponentially stable.

(££)Sysem T*.
(ii) System E* is detectable in the sense that there exists an output

injection operator T* (P , ) T * ) such that the closed loop semi-

group J T*(t) O (2T*)generated by T* + T* eT* -. T* uT*

is exponentially stable.

(iii) For every A L, ReA > o,

rank C(e A.) n

Note that (t)E ()) satisfies the integral equation.

(6.15) % (t) 4 (t)* + Jo t (t-s) q r (s)#ds

for every t > o and every * ), (see SALAW1IN [40 , Theorem 1.3.9])
and hence can be restricted to a semigroup on " if k.,( , -

At the end of this section we give a concrete representation of the output

injection semigroup % (t) t c ( ) by means of a closed loop functional

differential equation. For this sake note that every X 6 ( irf, R )

can be represented as

(6.16) OR1 y - (H y, H1(-)y, H2 (.)y)ex. it pI

there H 0 C U 1 . L . nxp) . 2 (.) (-h, o; .

Moreover, we introduce the abbreviating notation

0

Hi*#2 (T) I Hi(T-)42 (a)ds, -h s T 6 o,

for i - 1,2 and #2 G L2(-h,o; kP).
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Theorem 6.7

(i) Let x(-) C L 2o(-h,.; Zn' w 1 W 2(o,-; J) satisfy the RDE

(6.17) i(t) - L(x t+H *Yt) + B(ut+H2*yt) + Hoy(t)

whr u-)fi 2(h2 Po

here u(.) o(-h.-e; IRVm) and y(') f L oc (-h.. IP)& Then

(6.18) ;(t) - (x(t),x t + Hiyt,ut + H2 *t)g , t o,

is given by the variation-of-constants formula

t t

0 0

(ii) Let x(-) 6c L 2o(-h,-; - Wo2 (o,.; 1kn ) andboc b.c

Y(.) e: L 2c(-h,-; ZP) satisfy the equations

(6.20;1) x(t) - L(xt+11Yt) + B(H 2 *y t ) + Hoy(t),

(6.20;2) y(t) - C(xt +H1*yt), t ) 0,

and let i(t) 6 , t > o be defined by (6.18) with u(t) E o. Then

(6.21) ;(t) - 4 (t);(o)

Proof In order to prove statement (i), let us first assume that y(t) - o

for t o and define z(t) C kan v(t)E Pm for t > -h by

z(t) * x(t), v(t) - u(t) for t > o and

0 0

-(T) - x(r) * JI 1 (r-a)y(c)da , v(T) - U(T) + I H2(T-o)y(a)da
T T

for -h S T * o. Then it is easy to see that ;(t) - (z(t),z ,vt) for all

t I o and hence the following equation holds
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- L(xt +H 1*Yt) B(u t H 2*y ) H oy(t)

-~ ~ ~ 2 t o

This implies

;(t) - (z(t).zt 'v d - J (t)c(o) ,fts u(s)ds.

Secondly, let u(t) 2-o and x(r) o, y(T) o for -h < T o. Moreover,

let ~t) , Vt) t < -h. be the unique solution of

i(t) - UZ * + V tcorresponding to the input V(t) - 0, t >, o, and the initial

condition Z(o) - Ho ) Z(T) H H1 (T),V(Tr) H 2 (T), -h T < 0 . Then

(6.22) (Z (t) ,Zt V )J(t)~. WP to

Nov let us define

Z(t) - J Z(t-s)y(s)ds , aT) o a
0

t

a:(t'r) - foZ(t-s+-r)y (s)ds,

t

v(t,r) - Jo V(t-S+r)y(s)ds,

for t >, o and -h $ T o. Then we obtain

a~t,.) z at + Hi1*y t e- I (-h,o; (n

(6.23)

V(t,-) H H2*y~ t e (-h,o; .)

and hence
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z(t) - J Z(t-s)y(s)ds + Z(o)y(t)
0

h t

of dn() 0Z(t-3-T)y(S)ds

+ dS(T) V(t-s-r)y(s)ds + Z(o)y(t)
0 0

- L(zt+H I Yt ) + B(H 2 *y t ) + HoY(t)

for t , o. This implies that x(t) - z(t) for t > -h. Thus it follows from

(6.22) and (6.23) that

x(t) - (x(t),x t + H1*y tH 2 *yt)

=(z(t),z(t,.),v(t,.))

t

to (Z(t-s),Z t-sVt-s)Y(S)ds

t t-s) ( ytnds.
0

This proves statement (i)

In order to prove statement (ii), let us assume that

x(.) S L 2  (-h,, - .;l) 1 ,2 (o,- V,) and y(.) L I (-h,-; RP)loc loc loc
satisfy (6.20) and that x(t) 4- is defined by (6.18) with u(.) 0- o.

Moreover suppose that 0 - x(o)#') . Then y(t) t o, satisfies the

Volterra integral equation
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y(t) C(x t + HI1 yt)

h t

I dY(T) $ (t-t) f dy(r) x (t-r)

t 0

+ C dY() H1 (a-O)l y(t-s)ds. t o
o S

with forcing term in w 1,2 (0, ; This implies thatloc

Y(.) 1,2 (0, ,; &P) and hence, by (i),
lo c

; -t jf(t) ;(o) + ts~ ~ds r -

0

for every t > o. Moreover it follows from a general semigroup theoretic

result that ;(t) is continuously differentiable in and satisfies

d (t CL. ;(t) + 'K{y (t) -(0.. + )(t), t a
dt

This proves (6.21) for the case x(o) & 1 . In general (6.21) follows

frum the fact that both sides of this equation depend continuously on the

initial functions (x(o),xoy o) C _'T of (6.20).. (for existence and unique-

ness results for this type of equations see SALAMON (40, section 1.21). 123

Finally, note that the transposed equation of (6.20) takes the form
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X6.24;1) 1(t) - LT zt + CT

vWt) - E
T Z(t) + T  (-a)d T ()z(tis-r)ds

0 0

h T

(6.24;2) + f H (-s)dT()z(t+s-r)ds

0 0

h -r

+ f f HI (- s)dyT(T)v(t+s - T)ds
0 0

This is nothing more than the transposed RIDE (5.3) with a control law which

is analogos to (6.12).

6.3. The infinite time case

In this subsection we consider the performance index

(6.25) J(u) - C Il y(t u (t) Ru(t) ldt
0

associated with the Cauchy problems E and E T* where R 6 % " is a

positive definite matrix.

Combining the results of section 3 (Theorem 3.3 and Theorem 3.4)

and of the previous subsection (Theorem 6.5 and Corollary 6.6) we obtain

the facts which are summarised in the theorem below.

Theorem 6.8

(i) If

(6.26) rank [A(X), a~.L"] - V 9 ., ReA i 0,

then there exist positive semi-definite operators w r . (V, V) and

(RT T) satisfying the a:gebraic Riccati equations.
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4

(6.27) "# + w"'€ + V 00.,.$ - ltlR
1 

p* t * - 0

(4 r-V) respectively

(6.28) P - f~g~/Te~ +. - 0

(fC . T*). The minimal solutions 1 of (6.27) and e of (6.28) satisfy

the relation

(6.29) it- b

(ii) If (6.26) is satisfied, then there exists a unique optimal control

u(.) t L2  (o, ; Pm) which minimizes the performance index (6.25)
bOc

subject to (5.1), (5.2). This optimal control is given by the feedback

law

u(t) - -R7 1 4* x(t)

(6.30) - - R 8IT (t)

- 3Tp x !t)

where ir respectively
t is the minimal solution of (6.27) respectively (6.28).

The optimal cost corresponding to the initial state c is given by

(6.31) T(u)- <, ,1 > <f. ?f>

where f - j 4 is the initial state of (5.5).
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(iii) If

(6.32) rank ( ( ] n VA 4 C, lA at 0, then the algebraic

Riccati equation (6.27) respectively (6.28) has at mst one self adjoint.

noe gative solution w (2 ;L(V ,t1) talrespective.y V s (M W).
Moreover, if w respectively e is such a solution, then the closed loop

usegroup (t:) k ge('b,8nerated by a. -fit1/3 kv respectively
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REAIRKS ON THE LITERATURE

The linear quadratic control problem for RIDEs with undelayed

i/o-variables has been extensively studied by many authors, see e..

KUSHMER-BDARNA [30), ALEKAL-UUNOVSKY-CHYUNG-LEE [ 1, CURTAIN ( 8],

DELFOUR-MITTER [111, MANITIUS [36), DELFOUR-McCALLA-MITTER (131, DELFOUR-

LEE-4ANITIUS [14). DELFOUR [15], BANKS-BURNS [3 ]. First results on system

with a single point delay in the state and control variables can be found

in KOIVO-LEE [27], KWONG [28) and saw further ideas in this direction in

ICHIKAWA [22], [23]. However, an evolution equation approach to this

problem has only recently been developed by VINTER and [WOICG [41] for lYDEs

with distributed delays in the control variable. This approach has been

generalized to RFDEs with general delays in the state-and-control variables

by DELFOUR [16]. [17], [18]. Some results on the finite time linear quadratic

control problem for RFDEs with a single point delay in state, control and

observation can be found in the recent paper of LEE [33] and FERNADEZ-

BERDAGUER-LEE (201. However, they use different methods and have much more

restrictiveassumptions.

We have derived the solution to our infinite time optimal control problem

via the positive semi-definite solution T)'respectively

w t i( ,V) of the algebraic Riccati equation (6.28) respectively (6.27).

Therefore it would be extremely interesting to have a detailed characterization

of the structure of the operators V* and w which arises from the product space

structure of the state space. In the case of RFDEs with state delays only

such a characterization has been given in IKONG [29]; VINTER-XWONG [41] for the

operator V* and in DELFOUR NcCALLA-HITTER [13) for 'he operator i (note that

in this special case the operators Y and w may be defiuad on the state space

12 x L-h,o; Ikn 1. A analogous result for general systems of

the type (5.1) seem to be unknown since the Riccati equations (6.27) and

(6.28) are apparently new.
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